61. (a) Show that dB/ds is perpendicular to B. di ba! (b) Show that dB/ds is perpendicular to T. (c) Deduce from parts (a) and (b) that dB/ds = T(S)N for some number 7(s) called the torsion of the curve. (The torsion measures the degree of twisting of a curve.) (d) Show that for a plane curve the torsion is 7 (s) = 0. T -
61. (a) Show that dB/ds is perpendicular to B. di ba! (b) Show that dB/ds is perpendicular to T. (c) Deduce from parts (a) and (b) that dB/ds = T(S)N for some number 7(s) called the torsion of the curve. (The torsion measures the degree of twisting of a curve.) (d) Show that for a plane curve the torsion is 7 (s) = 0. T -
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
61
![870
CHAPTER 13 Vector Functions MOTO2
61. (a) Show that dB/ds is perpendicular to B.
(b) Show that dB/ds is perpendicular to T.
(c) Deduce from parts (a) and (b) that dB/ds = T(S)N
for some number 7(s) called the torsion of the curve.
(The torsion measures the degree of twisting of a curve.)
(d) Show that for a plane curve the torsion is 7 (s) = 0.
smala lentor
ups barl
62. The following formulas, called the Frenet-Serret formulas,
are of fundamental importance in differential geometry:
1. dT/ds = KN
2. dN/ds = -KT + TB
3. dB/ds=-TN
04.12
(Formula 1 comes from Exercise 59 and Formula 3 comes
from Exercise 61.) Use the fact that N = B X T to
deduce Formula 2 from Formulas 1 and 3.
63. Use the Frenet-Serret formulas to prove each of the follow-
ing. (Primes denote derivatives with respect to t. Start as in
the proof of Theorem 10.)
(a) r" = s'T + K(s')²N
(d)
(b) r' x r" = K (s')³ B
(c) r" = [s" - K²(s')³]T + [3ks's" + K'(s')² ]N + KT(S"
(r' xr") r"](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8e478c4b-4364-44bb-80a1-5284f424b563%2F60d23739-8eeb-499d-9a94-a13e3b5a0c61%2F6392ub1_processed.jpeg&w=3840&q=75)
Transcribed Image Text:870
CHAPTER 13 Vector Functions MOTO2
61. (a) Show that dB/ds is perpendicular to B.
(b) Show that dB/ds is perpendicular to T.
(c) Deduce from parts (a) and (b) that dB/ds = T(S)N
for some number 7(s) called the torsion of the curve.
(The torsion measures the degree of twisting of a curve.)
(d) Show that for a plane curve the torsion is 7 (s) = 0.
smala lentor
ups barl
62. The following formulas, called the Frenet-Serret formulas,
are of fundamental importance in differential geometry:
1. dT/ds = KN
2. dN/ds = -KT + TB
3. dB/ds=-TN
04.12
(Formula 1 comes from Exercise 59 and Formula 3 comes
from Exercise 61.) Use the fact that N = B X T to
deduce Formula 2 from Formulas 1 and 3.
63. Use the Frenet-Serret formulas to prove each of the follow-
ing. (Primes denote derivatives with respect to t. Start as in
the proof of Theorem 10.)
(a) r" = s'T + K(s')²N
(d)
(b) r' x r" = K (s')³ B
(c) r" = [s" - K²(s')³]T + [3ks's" + K'(s')² ]N + KT(S"
(r' xr") r"
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
![C How to Program (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780133976892/9780133976892_smallCoverImage.gif)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
![Database Systems: Design, Implementation, & Manag…](https://www.bartleby.com/isbn_cover_images/9781337627900/9781337627900_smallCoverImage.gif)
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education