6.5.1 Example A Consider the nonlinear equation Yk+2 = (yk+1)²/Yk- (6.74) If we set xk = log yk, then ak satisfies the equation %3D Xk+2 – 2xk+1 + xk = 0, (6.75) NONLINEAR DIFFERENCE EQUATIONS 203 the solution of which is Xk = C1 + c2k (6.76) Therefore, a general solution of equation (6.74) is Yk = ec1+c2k (6.77) or Yk Czec2k C3 > 0. (6.78)
6.5.1 Example A Consider the nonlinear equation Yk+2 = (yk+1)²/Yk- (6.74) If we set xk = log yk, then ak satisfies the equation %3D Xk+2 – 2xk+1 + xk = 0, (6.75) NONLINEAR DIFFERENCE EQUATIONS 203 the solution of which is Xk = C1 + c2k (6.76) Therefore, a general solution of equation (6.74) is Yk = ec1+c2k (6.77) or Yk Czec2k C3 > 0. (6.78)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Explain the determine blue
![6.5.1
Example A
Consider the nonlinear equation
Yk+2 = (Yk+1)²/yk.
(6.74)
If we set Xk
log yik, then xj, satisfies the equation
Xk+2
2xk+1 + Xk = 0,
(6.75)
NONLINEAR DIFFERENCE EQUATIONS
203
the solution of which is
Xk = C1 + c2k
(6.76)
Therefore, a general solution of equation (6.74) is
Yk = e©i+c2k
(6.77)
or
Czec2k
Сз > 0.
(6.78)
Yk](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb9c08ba6-0357-493f-88a3-1c046e8fa0d2%2F46168943-c193-4c18-aac3-37bb21b14ea8%2Fg35hz0k_processed.jpeg&w=3840&q=75)
Transcribed Image Text:6.5.1
Example A
Consider the nonlinear equation
Yk+2 = (Yk+1)²/yk.
(6.74)
If we set Xk
log yik, then xj, satisfies the equation
Xk+2
2xk+1 + Xk = 0,
(6.75)
NONLINEAR DIFFERENCE EQUATIONS
203
the solution of which is
Xk = C1 + c2k
(6.76)
Therefore, a general solution of equation (6.74) is
Yk = e©i+c2k
(6.77)
or
Czec2k
Сз > 0.
(6.78)
Yk
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)