6.4 Linear and Nonlinear Media 293 (a) FIGURE 6.31 (b) Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne- tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31). Treat the magnets as dipoles, with mass ma and dipole moment m. (a) If you put two back-to-back magnets on the rod, the upper one will "float"—the magnetic force upward balancing the gravitational force downward. At what height (z) does it float? (b) If you now add a third magnet (parallel to the bottom one), what is the ratio of the two heights? (Determine the actual number, to three significant digits.) [Answer: (a) [3µom²/2лmɑg] ¹⁄4; (b) 0.8501] Problem 6.24 Imagine two charged magnetic dipoles (charge q, dipole moment m), constrained to move on the z axis (same as Problem 6.23(a), but without gravity). Electrically they repel, but magnetically (if both m's point in the z direction) they attract. (a) Find the equilibrium separation distance. (b) What is the equilibrium separation for two electrons in this orientation. [Answer: 4.72 x 10-13 m.] (c) Does there exist, then, a stable bound state of two electrons?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Problem 6.24

6.4
Linear and Nonlinear Media
293
(a)
FIGURE 6.31
(b)
Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne-
tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31).
Treat the magnets as dipoles, with mass ma and dipole moment m.
(a) If you put two back-to-back magnets on the rod, the upper one will "float"—the
magnetic force upward balancing the gravitational force downward. At what
height (z) does it float?
(b) If you now add a third magnet (parallel to the bottom one), what is the ratio of
the two heights? (Determine the actual number, to three significant digits.)
[Answer: (a) [3µom²/2лmɑg] ¹⁄4; (b) 0.8501]
Problem 6.24 Imagine two charged magnetic dipoles (charge q, dipole moment m),
constrained to move on the z axis (same as Problem 6.23(a), but without gravity).
Electrically they repel, but magnetically (if both m's point in the z direction) they
attract.
(a) Find the equilibrium separation distance.
(b) What is the equilibrium separation for two electrons in this orientation.
[Answer: 4.72 x 10-13 m.]
(c) Does there exist, then, a stable bound state of two electrons?
Transcribed Image Text:6.4 Linear and Nonlinear Media 293 (a) FIGURE 6.31 (b) Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne- tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31). Treat the magnets as dipoles, with mass ma and dipole moment m. (a) If you put two back-to-back magnets on the rod, the upper one will "float"—the magnetic force upward balancing the gravitational force downward. At what height (z) does it float? (b) If you now add a third magnet (parallel to the bottom one), what is the ratio of the two heights? (Determine the actual number, to three significant digits.) [Answer: (a) [3µom²/2лmɑg] ¹⁄4; (b) 0.8501] Problem 6.24 Imagine two charged magnetic dipoles (charge q, dipole moment m), constrained to move on the z axis (same as Problem 6.23(a), but without gravity). Electrically they repel, but magnetically (if both m's point in the z direction) they attract. (a) Find the equilibrium separation distance. (b) What is the equilibrium separation for two electrons in this orientation. [Answer: 4.72 x 10-13 m.] (c) Does there exist, then, a stable bound state of two electrons?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON