6.4 Linear and Nonlinear Media 293 (a) FIGURE 6.31 (b) Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne- tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31). Treat the magnets as dipoles, with mass ma and dipole moment m. (a) If you put two back-to-back magnets on the rod, the upper one will "float"—the magnetic force upward balancing the gravitational force downward. At what height (z) does it float? (b) If you now add a third magnet (parallel to the bottom one), what is the ratio of the two heights? (Determine the actual number, to three significant digits.) [Answer: (a) [3µom²/2лmɑg] ¹⁄4; (b) 0.8501] Problem 6.24 Imagine two charged magnetic dipoles (charge q, dipole moment m), constrained to move on the z axis (same as Problem 6.23(a), but without gravity). Electrically they repel, but magnetically (if both m's point in the z direction) they attract. (a) Find the equilibrium separation distance. (b) What is the equilibrium separation for two electrons in this orientation. [Answer: 4.72 x 10-13 m.] (c) Does there exist, then, a stable bound state of two electrons?

Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter29: Magnetic Fields
Section: Chapter Questions
Problem 29.1CQ: Can a constant magnetic field set into motion an electron initially at test? Explain your answer.
icon
Related questions
Question

Problem 6.24

6.4
Linear and Nonlinear Media
293
(a)
FIGURE 6.31
(b)
Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne-
tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31).
Treat the magnets as dipoles, with mass ma and dipole moment m.
(a) If you put two back-to-back magnets on the rod, the upper one will "float"—the
magnetic force upward balancing the gravitational force downward. At what
height (z) does it float?
(b) If you now add a third magnet (parallel to the bottom one), what is the ratio of
the two heights? (Determine the actual number, to three significant digits.)
[Answer: (a) [3µom²/2лmɑg] ¹⁄4; (b) 0.8501]
Problem 6.24 Imagine two charged magnetic dipoles (charge q, dipole moment m),
constrained to move on the z axis (same as Problem 6.23(a), but without gravity).
Electrically they repel, but magnetically (if both m's point in the z direction) they
attract.
(a) Find the equilibrium separation distance.
(b) What is the equilibrium separation for two electrons in this orientation.
[Answer: 4.72 x 10-13 m.]
(c) Does there exist, then, a stable bound state of two electrons?
Transcribed Image Text:6.4 Linear and Nonlinear Media 293 (a) FIGURE 6.31 (b) Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne- tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31). Treat the magnets as dipoles, with mass ma and dipole moment m. (a) If you put two back-to-back magnets on the rod, the upper one will "float"—the magnetic force upward balancing the gravitational force downward. At what height (z) does it float? (b) If you now add a third magnet (parallel to the bottom one), what is the ratio of the two heights? (Determine the actual number, to three significant digits.) [Answer: (a) [3µom²/2лmɑg] ¹⁄4; (b) 0.8501] Problem 6.24 Imagine two charged magnetic dipoles (charge q, dipole moment m), constrained to move on the z axis (same as Problem 6.23(a), but without gravity). Electrically they repel, but magnetically (if both m's point in the z direction) they attract. (a) Find the equilibrium separation distance. (b) What is the equilibrium separation for two electrons in this orientation. [Answer: 4.72 x 10-13 m.] (c) Does there exist, then, a stable bound state of two electrons?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning