6. Use spherical coordinates to evaluate the triple integral of the function f(x, y, z)= x over the solid, bounded by the surfaces x² + y² +=² ≤1; x,y,z ≤0
6. Use spherical coordinates to evaluate the triple integral of the function f(x, y, z)= x over the solid, bounded by the surfaces x² + y² +=² ≤1; x,y,z ≤0
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Problem Statement
**Use spherical coordinates to evaluate the triple integral of the function \( f(x, y, z) = x \) over the solid bounded by the surfaces \( x^2 + y^2 + z^2 \leq 1 \) and \( x, y, z \leq 0 \).**
This problem requires you to convert the given integral into spherical coordinates and then evaluate the integral over the specified solid region.
#### Solution Steps:
1. **Convert Cartesian coordinates to spherical coordinates:**
- \( x = \rho \sin \phi \cos \theta \)
- \( y = \rho \sin \phi \sin \theta \)
- \( z = \rho \cos \phi \)
- Jacobian for spherical coordinates: \( \rho^2 \sin \phi \)
2. **Set the bounds of integration:**
- The solid is a portion of a sphere. In spherical coordinates, the surface \( x^2 + y^2 + z^2 = 1 \) corresponds to \( \rho = 1 \).
- The bounds for \( \rho \) are from 0 to 1.
- The inequality \( x, y, z \leq 0 \) means that \( \theta \) ranges from \( \pi/2 \) to \( \pi \) and \( \phi \) ranges from \( \pi/2 \) to \( \pi \).
3. **Set up the integral using spherical coordinates:**
\[
\iiint_V x \, dV = \int_{\pi/2}^{\pi} \int_{\pi/2}^{\pi} \int_0^1 (\rho \sin \phi \cos \theta) \cdot (\rho^2 \sin \phi) \, d\rho \, d\phi \, d\theta
\]
4. **Simplify the integrand:**
\[
\rho^3 \sin^2 \phi \cos \theta
\]
5. **Evaluate the integral:**
\[
\iiint_V x \, dV = \int_{\pi/2}^{\pi} \int_{\pi/2}^{\pi} \int_0^1 \rho^3 \sin^2 \phi \cos \theta \, d\rho \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc8817b33-049d-4a19-8d41-25253d14f586%2F1f918d75-a8ec-4df5-938d-6b436520b113%2Fvuecs1r_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem Statement
**Use spherical coordinates to evaluate the triple integral of the function \( f(x, y, z) = x \) over the solid bounded by the surfaces \( x^2 + y^2 + z^2 \leq 1 \) and \( x, y, z \leq 0 \).**
This problem requires you to convert the given integral into spherical coordinates and then evaluate the integral over the specified solid region.
#### Solution Steps:
1. **Convert Cartesian coordinates to spherical coordinates:**
- \( x = \rho \sin \phi \cos \theta \)
- \( y = \rho \sin \phi \sin \theta \)
- \( z = \rho \cos \phi \)
- Jacobian for spherical coordinates: \( \rho^2 \sin \phi \)
2. **Set the bounds of integration:**
- The solid is a portion of a sphere. In spherical coordinates, the surface \( x^2 + y^2 + z^2 = 1 \) corresponds to \( \rho = 1 \).
- The bounds for \( \rho \) are from 0 to 1.
- The inequality \( x, y, z \leq 0 \) means that \( \theta \) ranges from \( \pi/2 \) to \( \pi \) and \( \phi \) ranges from \( \pi/2 \) to \( \pi \).
3. **Set up the integral using spherical coordinates:**
\[
\iiint_V x \, dV = \int_{\pi/2}^{\pi} \int_{\pi/2}^{\pi} \int_0^1 (\rho \sin \phi \cos \theta) \cdot (\rho^2 \sin \phi) \, d\rho \, d\phi \, d\theta
\]
4. **Simplify the integrand:**
\[
\rho^3 \sin^2 \phi \cos \theta
\]
5. **Evaluate the integral:**
\[
\iiint_V x \, dV = \int_{\pi/2}^{\pi} \int_{\pi/2}^{\pi} \int_0^1 \rho^3 \sin^2 \phi \cos \theta \, d\rho \
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 16 images

Similar questions
Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning