6. Use Gaussian elimination to find the row echelon form of the matrices below. Show your work. What is the rank of each matrix? What is the dimension of its null space? Is the matrix invertible? For each non-invertible matrix, change one element to make it invertible. a. b. C. d. [512] 4 5 9 [12 3 32 1 5 2 6 1 -2 -7 1 9 2 782 "I do os 553 -1 9 -3 0 6 6 -

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
6.
Use Gaussian elimination to find the row echelon form of the matrices below.
Show your work. What is the rank of each matrix? What is the dimension of its null space? Is the
matrix invertible? For each non-invertible matrix, change one element to make it invertible.
a.
b.
C.
d.
5 1 2]
456
29 1
12 3
32 1
52 -1
-2 -7 1
9
2
TON OP-
-3
co or
53
Too
0
6
9
6
Transcribed Image Text:6. Use Gaussian elimination to find the row echelon form of the matrices below. Show your work. What is the rank of each matrix? What is the dimension of its null space? Is the matrix invertible? For each non-invertible matrix, change one element to make it invertible. a. b. C. d. 5 1 2] 456 29 1 12 3 32 1 52 -1 -2 -7 1 9 2 TON OP- -3 co or 53 Too 0 6 9 6
Expert Solution
Step 1

Note: "As per our guidelines we will solve the three subparts. If you want any specific subpart to be solved please specify that subpart or post only that subpart ."

(a).     A= 512456291    

(b).    B= 1 2   33 2   15 2-1

(c).    C=-2-7 1   6  5 9   2  3 2 

(.)  Rank - nullity theorem :  Let A be a             matrix of order m×n , then 

            rank(A) + nullity(A) = n                     i.e.  nnumber of columns .

=> Dimension of null space = nullity 

(.)  Number of non - zero rows in row echelon form  is called  'rank' .

(.)  If nullity of a matrix is  zero  then  the matrix is invertible .

(.)  Row Echelon form of a matrix :                                               A matrix is said to be in  row - echelon form if ,

(i)  All zero rows , if any are at the bottom          of the matrix .                                              (ii)  First non - zero element of every row is        on the right hand side of the first non -          zero element in the preceding row .

Example:-   123012001   ,  211011000

both matrix are in row - echelon form .

(.)   In Gaussian elimination method , we reduce the matrix in row echelon form by applying row operations .             

 

 

steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,