6. The life of a semiconductor laser at a constant power is normally distributed with a mean of 7000 hours and a standard deviation of 600 hours. (a) What is the probability that a laser fails before 5000 hours? (b) What is the life in hours that 95% of the lasers exceed? (c) If three lasers are used in a product and they are assumed to fail independently, what is the probability that all three are still operating after 7000 hours?

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
6. The life of a semiconductor laser at a constant power is normally distributed with a mean of
7000 hours and a standard deviation of 600 hours.
(a) What is the probability that a laser fails before 5000 hours?
(b) What is the life in hours that 95% of the lasers exceed?
(c) If three lasers are used in a product and they are assumed to fail independently, what is the
probability that all three are still operating after 7000 hours?
Transcribed Image Text:6. The life of a semiconductor laser at a constant power is normally distributed with a mean of 7000 hours and a standard deviation of 600 hours. (a) What is the probability that a laser fails before 5000 hours? (b) What is the life in hours that 95% of the lasers exceed? (c) If three lasers are used in a product and they are assumed to fail independently, what is the probability that all three are still operating after 7000 hours?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON