6. The Archimedean Property of the real numbers is the following statement: For every x, y ER such that x > 0 and y > 0, there exists n EN such that nx > y. (a) Prove that for every a ER, there exists ne N such that n > a. That is, N is not bounded above. [HINT: Proceed by contradiction, and use the Least Upper Bound Property of R.] (b) Use part (a) to prove that the Archimedean Property is true. (c) Use the Archimedean Property to prove that for every x € R such that x > 0, there exists n E N such that ⁄ < x. 1 n

Elements Of Modern Algebra
8th Edition
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Gilbert, Linda, Jimmie
Chapter2: The Integers
Section2.1: Postulates For The Integers (optional)
Problem 29E
icon
Related questions
Question

please show work 

6. The Archimedean Property of the real numbers is the following statement:
For every x, y ER such that x > 0 and y> 0, there exists n EN such that
nx > y.
(a) Prove that for every a € R, there exists n ≤ N such that n > a. That is, N is
not bounded above. [HINT: Proceed by contradiction, and use the Least Upper
Bound Property of R.]
(b) Use part (a) to prove that the Archimedean Property is true.
(c) Use the Archimedean Property to prove that for every x € R such that x > 0,
there exists n EN such that < x.
n
(d) Prove that there is a rational number between any two real numbers. That is, for
every a, b R with a ≤ b, there exists q E Q such that a <q < b. [HINT: Start by
using part (c) to find a denominator for q. Then, use the Well-Ordering Axiom
to choose a numerator for q.]
Transcribed Image Text:6. The Archimedean Property of the real numbers is the following statement: For every x, y ER such that x > 0 and y> 0, there exists n EN such that nx > y. (a) Prove that for every a € R, there exists n ≤ N such that n > a. That is, N is not bounded above. [HINT: Proceed by contradiction, and use the Least Upper Bound Property of R.] (b) Use part (a) to prove that the Archimedean Property is true. (c) Use the Archimedean Property to prove that for every x € R such that x > 0, there exists n EN such that < x. n (d) Prove that there is a rational number between any two real numbers. That is, for every a, b R with a ≤ b, there exists q E Q such that a <q < b. [HINT: Start by using part (c) to find a denominator for q. Then, use the Well-Ordering Axiom to choose a numerator for q.]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Modern Algebra
Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
College Algebra (MindTap Course List)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning