6. Prove Theorem 5.9 (a) and (b). Theorem 5.9. Let S be an orthonormal basis for an n-dimensional inner product space V. If the coordinate vectors of u and v relative to the basis S are given by [u]s = [u₁, U2,..., un] and [v]s = [V₁, V2,..., Un], then + u²₂/12. (a) ||u|| = √√u²+uz+ (b) d(u, v) = √(u₁ − v₁)² + (u₂ − v₂)² +….. + (un - vn)².
6. Prove Theorem 5.9 (a) and (b). Theorem 5.9. Let S be an orthonormal basis for an n-dimensional inner product space V. If the coordinate vectors of u and v relative to the basis S are given by [u]s = [u₁, U2,..., un] and [v]s = [V₁, V2,..., Un], then + u²₂/12. (a) ||u|| = √√u²+uz+ (b) d(u, v) = √(u₁ − v₁)² + (u₂ − v₂)² +….. + (un - vn)².
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![6. Prove Theorem 5.9 (a) and (b).
Theorem 5.9. Let S be an orthonormal basis for an n-dimensional inner product space V.
If the coordinate vectors of u and v relative to the basis S are given by
[u]s = [u₁, U₂,..., un]
[v]s = [V₁, V2, ..., Un],
then
and
(a) ||u|| = √√√u² + u² +
+ u²/12.
(b) d(u, v) = √(u₁ − v₁)² + (U2 − v₂)² +
v₁)² +
(U2 − v₂)² + ... + (Un — Vn) ².](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F87351664-192b-44e9-8681-fefec31a9dea%2Fd4f39d90-3ee9-46c3-9825-281e4e0efd0b%2F0ti64bd_processed.jpeg&w=3840&q=75)
Transcribed Image Text:6. Prove Theorem 5.9 (a) and (b).
Theorem 5.9. Let S be an orthonormal basis for an n-dimensional inner product space V.
If the coordinate vectors of u and v relative to the basis S are given by
[u]s = [u₁, U₂,..., un]
[v]s = [V₁, V2, ..., Un],
then
and
(a) ||u|| = √√√u² + u² +
+ u²/12.
(b) d(u, v) = √(u₁ − v₁)² + (U2 − v₂)² +
v₁)² +
(U2 − v₂)² + ... + (Un — Vn) ².
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)