6. Let S = {(a, b)lab >0}. Sketch the set S and determine if it is a subspace of R². 7. If A is a 3 x 3 matrix with |A| = -2, compute the following determinnants: |(49)³| |2A'(A-¹)²| 8. Determine the values of for which the following system of equations has nontrivial solutions. Find the solutions for each value of 2. 0 0 (5-2)x₁ 4x1 2x1 (a) u + v (c) u - 2w (e) 2u - 5v - w + 4x2 + (5-2)x2 + 2x2 + (2-2)x3 9. Compute the following for u = (3,-1, 5), v = (2, 3, 7), w = (0, 1, -3) or state it is not a valid expression. 2x3 = 0 2x3 = 0 = 0 (b) 3u + v (d) 4u2v + 3w (f) u. v +2w

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
---

**Mathematics Practice Problems**

**6. Problem Statement**

Let \( S = \{(a, b) | ab > 0\} \). Sketch the set \( S \) and determine if it is a subspace of \( \mathbb{R}^2 \).

**7. Determinant Computation**

If \( A \) is a 3 x 3 matrix with \( |A| = -2 \), compute the following determinants:

- \( |(A^3)^3| \)
- \( |2A^4(A^{-1})^2| \)

**8. System of Equations**

Determine the values of \( \lambda \) for which the following system of equations has nontrivial solutions. Find the solutions for each value of \( \lambda \).

\[
\begin{align*}
(5 - \lambda)x_1 + 4x_2 + 2x_3 &= 0 \\
4x_1 + (5 - \lambda)x_2 + 2x_3 &= 0 \\
2x_1 + 2x_2 + (2 - \lambda)x_3 &= 0 \\
\end{align*}
\]

**9. Vector Computation**

Compute the following for \( \mathbf{u} = (3, -1, 5) \), \( \mathbf{v} = (2, 3, 7) \), \( \mathbf{w} = (0, 1, -3) \) or state it is not a valid expression.

(a) \( \mathbf{u} + \mathbf{v} \)

(b) \( 3\mathbf{u} + \mathbf{v} \)

(c) \( \mathbf{u} - 2\mathbf{w} \)

(d) \( 4\mathbf{u} - 2\mathbf{v} + 3\mathbf{w} \)

(e) \( 2\mathbf{u} - 5\mathbf{v} - \mathbf{w} \)

(f) \( \mathbf{u} \cdot \mathbf{v} + 2\mathbf{w} \)

(g) \( 2\mathbf{u} - 3\mathbf{v} + \|\mathbf{v}\|\|\mathbf{w}\| \)

(h) \(
Transcribed Image Text:--- **Mathematics Practice Problems** **6. Problem Statement** Let \( S = \{(a, b) | ab > 0\} \). Sketch the set \( S \) and determine if it is a subspace of \( \mathbb{R}^2 \). **7. Determinant Computation** If \( A \) is a 3 x 3 matrix with \( |A| = -2 \), compute the following determinants: - \( |(A^3)^3| \) - \( |2A^4(A^{-1})^2| \) **8. System of Equations** Determine the values of \( \lambda \) for which the following system of equations has nontrivial solutions. Find the solutions for each value of \( \lambda \). \[ \begin{align*} (5 - \lambda)x_1 + 4x_2 + 2x_3 &= 0 \\ 4x_1 + (5 - \lambda)x_2 + 2x_3 &= 0 \\ 2x_1 + 2x_2 + (2 - \lambda)x_3 &= 0 \\ \end{align*} \] **9. Vector Computation** Compute the following for \( \mathbf{u} = (3, -1, 5) \), \( \mathbf{v} = (2, 3, 7) \), \( \mathbf{w} = (0, 1, -3) \) or state it is not a valid expression. (a) \( \mathbf{u} + \mathbf{v} \) (b) \( 3\mathbf{u} + \mathbf{v} \) (c) \( \mathbf{u} - 2\mathbf{w} \) (d) \( 4\mathbf{u} - 2\mathbf{v} + 3\mathbf{w} \) (e) \( 2\mathbf{u} - 5\mathbf{v} - \mathbf{w} \) (f) \( \mathbf{u} \cdot \mathbf{v} + 2\mathbf{w} \) (g) \( 2\mathbf{u} - 3\mathbf{v} + \|\mathbf{v}\|\|\mathbf{w}\| \) (h) \(
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,