6. If V(x, y) = xsin x cos y + y² then, F-VV and it is equal to A. -ily sinx cos y sinx cos y] +j[-xsin x siny + 2x] B. -i[x cos x cos y -cos x cos y]-j[-x sinxsin y + 2y] C. -ily cos x siny - sinx cos y] +j[-xsin x siny + 2y] D. -i[x cos x cos y + sinxsin y] -j[-xsin x siny + 2y] E. -ily sinx cos y sin x cos y] +j[-x sin x siny + 2y] F. -i[x cos xsin y-sinx cos y] -j[-xsin x siny + 2y] G. -i[x cos x cosy +sin x cos y]-j[-xsin x siny + 2y] H. None of the above O A OB O C O D O E OF

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
i need the answer quickly
6. If V(x, y) = r sin x cos y + y²
then, FVV and it is equal to
A. - ily sinx cos y sinx cos y] +j[-xsin x siny + 2x]
B. -i[x cos x cos y -cos x cos y]-j[-x sinxsin y + 2y]
C. -ily cos xsin y-sin x cos y] +j[-xsin x siny + 2y]
D. -i[x cos x cos y + sinxsin y] -[-xsin x siny + 2y]
E. ily sinx cos y sin x cos y] +j[-xsin x siny + 2y]
F. -i[x cos xsin y-sinx cos y] -j[-xsin x siny + 2y]
G. -i[x cos x cosy +sin x cos y]-[-xsin x sin y + 2y]
H. None of the above
O A
O B
O C
O E
OF
G
О н
Transcribed Image Text:6. If V(x, y) = r sin x cos y + y² then, FVV and it is equal to A. - ily sinx cos y sinx cos y] +j[-xsin x siny + 2x] B. -i[x cos x cos y -cos x cos y]-j[-x sinxsin y + 2y] C. -ily cos xsin y-sin x cos y] +j[-xsin x siny + 2y] D. -i[x cos x cos y + sinxsin y] -[-xsin x siny + 2y] E. ily sinx cos y sin x cos y] +j[-xsin x siny + 2y] F. -i[x cos xsin y-sinx cos y] -j[-xsin x siny + 2y] G. -i[x cos x cosy +sin x cos y]-[-xsin x sin y + 2y] H. None of the above O A O B O C O E OF G О н
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,