6. Find a cubic function f(r) = ar³ + bx² + cx +d that has a local maximum value of 3 at r =-2 and a local minimum value of 0 at r = 1.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

How do I do number 6

### Mathematical Problems and Exercises

#### 5
A number \( a \) is called a fixed point of a function \( f \) if \( f(a) = a \). Prove that if \( f'(x) \neq 1 \) for all real numbers \( x \), then \( f \) has at most one fixed point.

#### 6
Find a cubic function \( f(x) = ax^3 + bx^2 + cx + d \) that has a local maximum value of 3 at \( x = -2 \) and a local minimum value of 0 at \( x = 1 \).

#### 7
Sketch the graph of a function \( f \) that satisfies the following conditions:
- \( f'(0) = f'(2) = f'(4) = 0 \)
- \( f'(x) > 0 \) if \( x < 0 \) or \( 2 < x < 4 \)
- \( f'(x) < 0 \) if \( 0 < x < 2 \) or \( x > 4 \)
- \( f''(x) > 0 \) if \( 1 < x < 3 \)
- \( f''(x) < 0 \) if \( x < 1 \) or \( x > 3 \)

#### Evaluate the following limits:
8. \( \lim_{x \to -\infty} (x - \sqrt{x}) \)

9. \( \lim_{x \to \infty} \sqrt[3]{x} \sin\left(\frac{1}{x}\right) \)

10. \( \lim_{x \to 0^+} \frac{\frac{7}{x} + x + 5}{\sqrt{\frac{3}{x^2} + \frac{2}{x} + 1}} \)
Transcribed Image Text:### Mathematical Problems and Exercises #### 5 A number \( a \) is called a fixed point of a function \( f \) if \( f(a) = a \). Prove that if \( f'(x) \neq 1 \) for all real numbers \( x \), then \( f \) has at most one fixed point. #### 6 Find a cubic function \( f(x) = ax^3 + bx^2 + cx + d \) that has a local maximum value of 3 at \( x = -2 \) and a local minimum value of 0 at \( x = 1 \). #### 7 Sketch the graph of a function \( f \) that satisfies the following conditions: - \( f'(0) = f'(2) = f'(4) = 0 \) - \( f'(x) > 0 \) if \( x < 0 \) or \( 2 < x < 4 \) - \( f'(x) < 0 \) if \( 0 < x < 2 \) or \( x > 4 \) - \( f''(x) > 0 \) if \( 1 < x < 3 \) - \( f''(x) < 0 \) if \( x < 1 \) or \( x > 3 \) #### Evaluate the following limits: 8. \( \lim_{x \to -\infty} (x - \sqrt{x}) \) 9. \( \lim_{x \to \infty} \sqrt[3]{x} \sin\left(\frac{1}{x}\right) \) 10. \( \lim_{x \to 0^+} \frac{\frac{7}{x} + x + 5}{\sqrt{\frac{3}{x^2} + \frac{2}{x} + 1}} \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning