6. Determine the domain and range of the vector valued fun r(t) = (In(t-2). √²) 1 t-4' fang

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Determine the domain and range of the vector-valued function:

\[ 
\mathbf{r}(t) = \left\langle \ln(t-2), \frac{1}{t-4}, \sqrt{t} \right\rangle 
\]

**Explanation:**

To find the domain of the vector-valued function \(\mathbf{r}(t)\), we need to determine the values of \(t\) for which each component of the function is defined.

1. **First Component \(\ln(t-2)\):**
   - The logarithm function \(\ln(x)\) is defined for \(x > 0\).
   - Thus, \(t-2 > 0 \Rightarrow t > 2\).

2. **Second Component \(\frac{1}{t-4}\):**
   - The expression \(\frac{1}{x}\) is defined for \(x \neq 0\).
   - Thus, \(t - 4 \neq 0 \Rightarrow t \neq 4\).

3. **Third Component \(\sqrt{t}\):**
   - The square root function \(\sqrt{x}\) is defined for \(x \geq 0\).
   - Thus, \(t \geq 0\).

Combining these conditions, the domain of \(\mathbf{r}(t)\) is \(t > 2\) and \(t \neq 4\), or in interval notation: \((2, 4) \cup (4, \infty)\).

**Range:**

To determine the range, analyze the output of each component based on the domain:

1. **\(\ln(t-2)\):**
   - As \(t > 2\), \(\ln(t-2)\) can take any real number value from \(-\infty\) to \(\infty\).

2. **\(\frac{1}{t-4}\):**
   - As \(t\) approaches 4 from either side, \(\frac{1}{t-4}\) approaches \(\pm \infty\).
   - Thus, it can take any real number except 0.

3. **\(\sqrt{t}\):**
   - Since \(t > 2\), \(\sqrt{t} > \sqrt{2}\).

Overall, the
Transcribed Image Text:**Problem Statement:** Determine the domain and range of the vector-valued function: \[ \mathbf{r}(t) = \left\langle \ln(t-2), \frac{1}{t-4}, \sqrt{t} \right\rangle \] **Explanation:** To find the domain of the vector-valued function \(\mathbf{r}(t)\), we need to determine the values of \(t\) for which each component of the function is defined. 1. **First Component \(\ln(t-2)\):** - The logarithm function \(\ln(x)\) is defined for \(x > 0\). - Thus, \(t-2 > 0 \Rightarrow t > 2\). 2. **Second Component \(\frac{1}{t-4}\):** - The expression \(\frac{1}{x}\) is defined for \(x \neq 0\). - Thus, \(t - 4 \neq 0 \Rightarrow t \neq 4\). 3. **Third Component \(\sqrt{t}\):** - The square root function \(\sqrt{x}\) is defined for \(x \geq 0\). - Thus, \(t \geq 0\). Combining these conditions, the domain of \(\mathbf{r}(t)\) is \(t > 2\) and \(t \neq 4\), or in interval notation: \((2, 4) \cup (4, \infty)\). **Range:** To determine the range, analyze the output of each component based on the domain: 1. **\(\ln(t-2)\):** - As \(t > 2\), \(\ln(t-2)\) can take any real number value from \(-\infty\) to \(\infty\). 2. **\(\frac{1}{t-4}\):** - As \(t\) approaches 4 from either side, \(\frac{1}{t-4}\) approaches \(\pm \infty\). - Thus, it can take any real number except 0. 3. **\(\sqrt{t}\):** - Since \(t > 2\), \(\sqrt{t} > \sqrt{2}\). Overall, the
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning