6. Are the following series convergent? Why? (a). (b) 00 n=1 α 2 (3n-1)1.3 n=1 n2 – 1 2η2 + η

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
6. Are the following series convergent? Why?
(a).
(b)
8
n=1
2
(3n - 1)1.3
n=1
n² - 1
2n² + n
Transcribed Image Text:6. Are the following series convergent? Why? (a). (b) 8 n=1 2 (3n - 1)1.3 n=1 n² - 1 2n² + n
Expert Solution
Step 1

The given series are , 

(a).        n=12(3n-1)1.3

(b).         n=1 n2-12n2+n

(.)  Necessary  condition for convergence :                     If the series  n=1an converges ,        then  limnan = 0 .

(.)  Contrapositive of above statement :                   If  limnan0  then series n=1an             does  not converge .

(.)  Limit comparison test :  If  n=1an and         n=1bn are two positive term series such       that  limnanbn = l ; where  'l' is a finite        and non - zero real number , then both          series  n=1an &  n=1bn converge or              diverge together .

(.)  p-series test :  The series n=11np is          convergent  if  p>1 and divergent if              p1 .

 

 

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,