6) y = e *(x* – 5) dy A) dx 5x² 10x + 4x3 = 21(5e* + 2x²) dy 5x2 B) = e* · 10x · 4x³ + e³* · 10x · 4x³3 5x² dx = 80x*e$x² dy C) Sx* . 4x dx dy 5x D) 4x³ + (x* – 5) · e³* - 10x eSp² 5x2 dx 5x2 = 2xe* (2x² + 5xr* – 25) %3D -

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
Differentiate each function with respect to x and show work
6) y= e*(x* – 5)
dy
5x2
= e
eśx . 10x + 4x³
A)
dx
2.(5e** + 2x²)
dy
B)
e3x* . 10x · 4x³ + ex* • 10x · 4x³
5x2
%3D
dx
= 80x*e
.45x²
dy
eSx² . 4x³
C)
%3D
dx
dy
5x²
4x³ + (x* – 5) · e³x . 10x
D)
5x²
e
-
dx
= 2xe* (2x² + 5x* – 25)
Transcribed Image Text:6) y= e*(x* – 5) dy 5x2 = e eśx . 10x + 4x³ A) dx 2.(5e** + 2x²) dy B) e3x* . 10x · 4x³ + ex* • 10x · 4x³ 5x2 %3D dx = 80x*e .45x² dy eSx² . 4x³ C) %3D dx dy 5x² 4x³ + (x* – 5) · e³x . 10x D) 5x² e - dx = 2xe* (2x² + 5x* – 25)
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Rules of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,