6 Write each of the following complex numbers in the form a + bi. (a)* 3 cis120°

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
**Problem 6:** Write each of the following complex numbers in the form \(a + bi\).

**(a)** \(3 \, \text{cis} \, 120^\circ\)

---

This problem asks to convert a complex number given in polar form to its equivalent in rectangular form. The polar form \( r \, \text{cis} \, \theta \) can be expressed as:

\[ r \cdot (\cos \theta + i \sin \theta) \]

So, to convert \(3 \, \text{cis} \, 120^\circ\) to the form \(a + bi\), compute:

\[ a = 3 \cdot \cos 120^\circ \]
\[ b = 3 \cdot \sin 120^\circ \]

Thus, \(3 \, \text{cis} \, 120^\circ = 3(\cos 120^\circ + i \sin 120^\circ)\).
Transcribed Image Text:**Problem 6:** Write each of the following complex numbers in the form \(a + bi\). **(a)** \(3 \, \text{cis} \, 120^\circ\) --- This problem asks to convert a complex number given in polar form to its equivalent in rectangular form. The polar form \( r \, \text{cis} \, \theta \) can be expressed as: \[ r \cdot (\cos \theta + i \sin \theta) \] So, to convert \(3 \, \text{cis} \, 120^\circ\) to the form \(a + bi\), compute: \[ a = 3 \cdot \cos 120^\circ \] \[ b = 3 \cdot \sin 120^\circ \] Thus, \(3 \, \text{cis} \, 120^\circ = 3(\cos 120^\circ + i \sin 120^\circ)\).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,