6) Suppose V is a finite-dimensional with dim V > 1 and T e L(V). Prove that {p(T)lp € F[x]} # L(V). SupnoceT dia able Prove the ll TA rango T
6) Suppose V is a finite-dimensional with dim V > 1 and T e L(V). Prove that {p(T)lp € F[x]} # L(V). SupnoceT dia able Prove the ll TA rango T
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
6
![can be no such operator.
6) Suppose V is a finite-dimensional with dim V > 1 and T E L(V). Prove that
{p(T)|p € F[x]} # L(V).
7) Suppose TE L(V) is diagonalizable. Prove that V = null T range T.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa9774f45-b264-467e-8b06-716b402d428d%2F0e6ecb52-384b-429b-b9a3-89605978f621%2F57sw8s_processed.jpeg&w=3840&q=75)
Transcribed Image Text:can be no such operator.
6) Suppose V is a finite-dimensional with dim V > 1 and T E L(V). Prove that
{p(T)|p € F[x]} # L(V).
7) Suppose TE L(V) is diagonalizable. Prove that V = null T range T.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Writing the given information
Suppose
We need to prove the space of polynomials over the field
To prove this it is sufficient to show that
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 13 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)