6) If an converges, then n=1 a) E converges. n=1 b) lim an = 0. n00 00 c) E(an)² converges. n=1 d) E cos(an) converges.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Solve both 46 and 47 please

46) If E an converges, then
n=1
00
a) E converges.
n=1
b) lim an = 0.
n00
c) E(an)? converges.
n=1
d) E cos(an) converges.
n=1
e) E cos(am) dinverges.
n=1
47) If E an converges and an > 0 for all n E N. Which of the following are true?
n=1
a) E(an)? converges.
n=1
b) E sin(an) converges.
n=1
c) If {bn} is bounded, bnan converges.
n=1
d) 2 ap(n) converges for any 1-1 and onto function y : N → N and a,oln)
n=1
E am.
n=1
e) E ap(n) converges for any 1-1 and onto function y : N → N but E ap(n) can be
n=1
n=1
different from ) an:
Transcribed Image Text:46) If E an converges, then n=1 00 a) E converges. n=1 b) lim an = 0. n00 c) E(an)? converges. n=1 d) E cos(an) converges. n=1 e) E cos(am) dinverges. n=1 47) If E an converges and an > 0 for all n E N. Which of the following are true? n=1 a) E(an)? converges. n=1 b) E sin(an) converges. n=1 c) If {bn} is bounded, bnan converges. n=1 d) 2 ap(n) converges for any 1-1 and onto function y : N → N and a,oln) n=1 E am. n=1 e) E ap(n) converges for any 1-1 and onto function y : N → N but E ap(n) can be n=1 n=1 different from ) an:
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,