6) f(x) =xcos x 2n(-1)" • sin(nx) (n-1)(n+1)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Exercise (3-2): find Fourier series on [0,2n]
Question
Answer
(1) f(x)=x/2
sin nx
(2) f(x)= -x
sin nx
(3) f(x)=sinx
sin x
(4) f(x) = cos x
COS X
(5) f(x)=xsin x
2
-COS nx
n -1
-1+
6) f(x)=xcos x
2n(-1)"
Σ
sin(nx)
H(n-1)(n +1)
0<x<A
-i-CD sin nx
1-(-1)"
(7) f(x) =
2.
1 n<x< 2n
0<x<T
2-1+(-1)"
sin nx
(8) f(x) =-
1
πくx<2元
0<xく元
3 1-(-1) sin nx
(9) f(x) =-
2.
|2 くx<2元
- 1/4
(10) f(x)=
- T<x<0
1-1+(-1)"
sin nx
0<x<A
0<xくて
37
-1)" -1
sin nx
(11) f(x) =
COS nx-
T Tくx<2元
0<x<A
sin nx
(12) f(x) =-
COS NX +
元くx<2元
4
(13) f(x)=
0<x<T
(-1)" -
COS nx
27-x
A<x< 27
T -n
Transcribed Image Text:Exercise (3-2): find Fourier series on [0,2n] Question Answer (1) f(x)=x/2 sin nx (2) f(x)= -x sin nx (3) f(x)=sinx sin x (4) f(x) = cos x COS X (5) f(x)=xsin x 2 -COS nx n -1 -1+ 6) f(x)=xcos x 2n(-1)" Σ sin(nx) H(n-1)(n +1) 0<x<A -i-CD sin nx 1-(-1)" (7) f(x) = 2. 1 n<x< 2n 0<x<T 2-1+(-1)" sin nx (8) f(x) =- 1 πくx<2元 0<xく元 3 1-(-1) sin nx (9) f(x) =- 2. |2 くx<2元 - 1/4 (10) f(x)= - T<x<0 1-1+(-1)" sin nx 0<x<A 0<xくて 37 -1)" -1 sin nx (11) f(x) = COS nx- T Tくx<2元 0<x<A sin nx (12) f(x) =- COS NX + 元くx<2元 4 (13) f(x)= 0<x<T (-1)" - COS nx 27-x A<x< 27 T -n
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,