6) f(x) =xcos x 2n(-1)" • sin(nx) (n-1)(n+1)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Exercise (3-2): find Fourier series on [0,2n]
Question
Answer
(1) f(x)=x/2
sin nx
(2) f(x)= -x
sin nx
(3) f(x)=sinx
sin x
(4) f(x) = cos x
COS X
(5) f(x)=xsin x
2
-COS nx
n -1
-1+
6) f(x)=xcos x
2n(-1)"
Σ
sin(nx)
H(n-1)(n +1)
0<x<A
-i-CD sin nx
1-(-1)"
(7) f(x) =
2.
1 n<x< 2n
0<x<T
2-1+(-1)"
sin nx
(8) f(x) =-
1
πくx<2元
0<xく元
3 1-(-1) sin nx
(9) f(x) =-
2.
|2 くx<2元
- 1/4
(10) f(x)=
- T<x<0
1-1+(-1)"
sin nx
0<x<A
0<xくて
37
-1)" -1
sin nx
(11) f(x) =
COS nx-
T Tくx<2元
0<x<A
sin nx
(12) f(x) =-
COS NX +
元くx<2元
4
(13) f(x)=
0<x<T
(-1)" -
COS nx
27-x
A<x< 27
T -n](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2ed5350d-b3a5-49e2-a40c-70f8af1ce396%2F71b12a2a-90ac-4f57-8635-a0695a172c6a%2F31slsp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Exercise (3-2): find Fourier series on [0,2n]
Question
Answer
(1) f(x)=x/2
sin nx
(2) f(x)= -x
sin nx
(3) f(x)=sinx
sin x
(4) f(x) = cos x
COS X
(5) f(x)=xsin x
2
-COS nx
n -1
-1+
6) f(x)=xcos x
2n(-1)"
Σ
sin(nx)
H(n-1)(n +1)
0<x<A
-i-CD sin nx
1-(-1)"
(7) f(x) =
2.
1 n<x< 2n
0<x<T
2-1+(-1)"
sin nx
(8) f(x) =-
1
πくx<2元
0<xく元
3 1-(-1) sin nx
(9) f(x) =-
2.
|2 くx<2元
- 1/4
(10) f(x)=
- T<x<0
1-1+(-1)"
sin nx
0<x<A
0<xくて
37
-1)" -1
sin nx
(11) f(x) =
COS nx-
T Tくx<2元
0<x<A
sin nx
(12) f(x) =-
COS NX +
元くx<2元
4
(13) f(x)=
0<x<T
(-1)" -
COS nx
27-x
A<x< 27
T -n
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Similar questions
Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

