6 B *- {[1][*]} [6]. -- 6 [3] is an orthogonal basis of R². Find [v]®•

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The problem presents an orthogonal basis for \( \mathbb{R}^2 \), denoted as:

\[ 
\mathcal{B} = \left\{ \begin{bmatrix} 6 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ -6 \end{bmatrix} \right\} 
\]

and asks to find the coordinates of the vector \( \mathbf{v} \) with respect to this basis. The vector \( \mathbf{v} \) is given by:

\[
\mathbf{v} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}
\]

The task is to find \([\mathbf{v}]_{\mathcal{B}}\), the representation of the vector \( \mathbf{v} \) in the basis \(\mathcal{B}\).
Transcribed Image Text:The problem presents an orthogonal basis for \( \mathbb{R}^2 \), denoted as: \[ \mathcal{B} = \left\{ \begin{bmatrix} 6 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ -6 \end{bmatrix} \right\} \] and asks to find the coordinates of the vector \( \mathbf{v} \) with respect to this basis. The vector \( \mathbf{v} \) is given by: \[ \mathbf{v} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \] The task is to find \([\mathbf{v}]_{\mathcal{B}}\), the representation of the vector \( \mathbf{v} \) in the basis \(\mathcal{B}\).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,