(5z + 8)ª Find the derivative of In 16 + 10

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Topic Video
Question
100%
## Derivative of a Logarithmic Function

In this problem, we are asked to find the derivative of the natural logarithm function:

\[ \ln \left( \frac{(5x+8)^3}{x^6+10} \right) \]

### Steps to Solve

1. **Simplify the Logarithmic Expression:**

   Using the properties of logarithms, we can simplify the given expression:

   \[ \ln \left( \frac{(5x+8)^3}{x^6+10} \right) = \ln (5x+8)^3 - \ln (x^6+10) \]

   According to the power rule of logarithms \( \ln (a^b) = b \ln a \):

   \[ = 3 \ln (5x+8) - \ln (x^6+10) \]

2. **Differentiate the Simplified Expression:**

   Now, we can find the derivative of this simplified expression:

   \[ \frac{d}{dx} \left[ 3 \ln (5x+8) - \ln (x^6+10) \right] \]

   Applying the chain rule and the derivative of the natural logarithm function \( \frac{d}{dx} [\ln u] = \frac{1}{u} \cdot \frac{du}{dx} \):

   \[ = 3 \cdot \frac{1}{5x+8} \cdot \frac{d}{dx} [5x+8] - \frac{1}{x^6+10} \cdot \frac{d}{dx} [x^6+10] \]

3. **Evaluate the Derivatives of the Inside Functions:**

   \[ \frac{d}{dx} [5x+8] = 5 \]

   \[ \frac{d}{dx} [x^6+10] = 6x^5 \]

4. **Combine the Results:**

   Substituting these derivatives back into the expression:

   \[ = 3 \cdot \frac{5}{5x+8} - \frac{6x^5}{x^6+10} \]

   Simplify the terms:

   \[ = \frac{15}{5x+8} - \frac
Transcribed Image Text:## Derivative of a Logarithmic Function In this problem, we are asked to find the derivative of the natural logarithm function: \[ \ln \left( \frac{(5x+8)^3}{x^6+10} \right) \] ### Steps to Solve 1. **Simplify the Logarithmic Expression:** Using the properties of logarithms, we can simplify the given expression: \[ \ln \left( \frac{(5x+8)^3}{x^6+10} \right) = \ln (5x+8)^3 - \ln (x^6+10) \] According to the power rule of logarithms \( \ln (a^b) = b \ln a \): \[ = 3 \ln (5x+8) - \ln (x^6+10) \] 2. **Differentiate the Simplified Expression:** Now, we can find the derivative of this simplified expression: \[ \frac{d}{dx} \left[ 3 \ln (5x+8) - \ln (x^6+10) \right] \] Applying the chain rule and the derivative of the natural logarithm function \( \frac{d}{dx} [\ln u] = \frac{1}{u} \cdot \frac{du}{dx} \): \[ = 3 \cdot \frac{1}{5x+8} \cdot \frac{d}{dx} [5x+8] - \frac{1}{x^6+10} \cdot \frac{d}{dx} [x^6+10] \] 3. **Evaluate the Derivatives of the Inside Functions:** \[ \frac{d}{dx} [5x+8] = 5 \] \[ \frac{d}{dx} [x^6+10] = 6x^5 \] 4. **Combine the Results:** Substituting these derivatives back into the expression: \[ = 3 \cdot \frac{5}{5x+8} - \frac{6x^5}{x^6+10} \] Simplify the terms: \[ = \frac{15}{5x+8} - \frac
Expert Solution
steps

Step by step

Solved in 4 steps with 8 images

Blurred answer
Knowledge Booster
Rules of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning