54. P(x)= x³ + 2x²-3x - 10, 55. P(x) = 2x³ + 7x² + 6x - 5, 56. P(x) = x + 3x³ c = 2 c = } 16x²27x + 63, c = 3, GL

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Can you please do number 55
9. P(x) = -x³ - 2x + 6,
10. P(x) = x + 2r - 10x,
11. P(x) = 2x³ 3x² - 2x,
12. P(x) = 4x³ + 7x +9,
13. P(x) = 8x4 + 4x³ + 6x²,
14. P(x) = 27x59x² + 3x²-3,
310 CHAPTER 3 Polynomial and Rational Functions
9-14 Division of Polynomials Two polynomials P and D are
given. Use either synthetic or long division to divide P(x) by
D(x), and express P in the form
P(x) = D(x) Q(x) + R(x)
D(x) = x + 1
D(x) = x-3
D(x) = 2x - 3
D(x) = 2x + 1
D(x) = 2x² + 1
P(x) = 6x²
40x6 + 16x³ - 200x4
- 60 - 69x² + 13x – 139
uol pergah to Calculate P(7) by (a) using synthetic division and (b) sub
tuting x= 7 into the polynomial and evaluating directly.
53-56 Factor Theorem Use the Factor Theorem to show the
der Theorem to Find the Value
x-c is a factor of P(x) for the given value(s) of c.
-53. P(x)= x³ 3x² + 3x - 1,
c = 1
54. P(x) = x³ + 2x² - 3x - 10,
A songsb 10 21 55. P(x) = 2x³ + 7x² + 6x-5,
ona (d noils
25-38 Synthetic Division of Polynomials Find the quotient
and remainder using synthetic division.
2x²5x + 3
15-24 Long Division of Polynomials
remainder using long division.
x²-3x + 7
x-2
15.
35.
36.
37.
17.
19.
21.
23.
25.
33.
27.
29.
x² + 2x² + 2x + 1
x + 2
31, +³¹-8r+2
-
x + 3
x² + 3x³ - 6
x-1
2x² + 3x² - 2x + 1
4x³ + 2x² - 2x - 3
2x + 1
+³+ 2x + 1 bna.
x²-x+ 3
6x³ + 2x² + 22x (2
2x² + 5
+x²+x²+1
x² + 1
- 3
3x² + x
x + 1
2019 bei 16.
Inimonyfog
x-001 noled
x³ - 27
x - 3
6x + 10x³ + 5x² + x + 1
x + }
18.
20.
22.
24.
26.
28.
38.
30.
32.
34.
D(x) = 3x²-3x + 1
Find the quotient and
3x³-12x²9x + 1
x - 5
**-x³+x²-x+ 2
x-2
x³9x² + 27x27
x-3
alsimon lot to noiivid @ 8-8
x³ + 2x² = x + 1
x + 3
x³ + 3x² + 4x + 3
3x + 6
x²-3x³ + x2
rẻ -5x+1
9x² - x + 5
3x² - 7x
2x³-7x4-13
4x² - 6x + 8.
c = -1
-x²+x-4 = (x)Q
*+1 bizob od led
4x²-3 mogaomoo 9
x-2
x 16
x + 2
39. P(x) = 4x² + 12x + 5,
40. P(x) = 2x² + 9x + 1, c= /
41. P(x)=x² + 3x² - 7x + 6₁ c = 2
39-51 Remainder Theorem Use synthetic division and the
Remainder Theorem to evaluate P(c).
42. P(x) = x¹-x² + x + 5₁ c = -1
43. P(x) = x² + 2x²2 - 7, c = -2
44. P(x) = 2x³ - 21x² + 9x 200, c = 11
45. P(x) = 5x + 30x³ 40x² + 36x + 14, c = -1
46. P(x) = 6x² + 10x³ + x + 1,
c = -2
47. P(x)=x²-3x² - 1, c = 3
48. P(x) = -2x + 7x³ + 40x4 - 7x² + 10x + 112, c=
49. P(x) = 3x³ + 4x² - 2x + 1,
c = 3
50. P(x) = x¹ - x + 1, c = 1
51. P(x) = x³ + 2x²-3x - 8, c = 0.1
52. Remainder Theorem Let
56. P(x) = x + 3x³ 16x² - 27x + 63, c = 3, -3
ei Isimon yloq Belesbision for this probl
57-62 Factor Theorem Show that the given value(s) of car
zeros of P(x), and find all other zeros of P(x).
57. P(x)= x³ + 2x²9x 18, c = -2
58. P(x) = x³ - 5x² - 2x + 10,
c=5
59. P(x)=x²-x² - 11x + 15,
c = 3
60. P(x) = 3x -x³-21x² - 11x + 6, c = -2,
61. P(x) = 3x - 8x³ - 14x² + 31x + 6, c = -2,3
62. P(x) = 2x13x³ + 7x² + 37x + 15, c = -1,3
63-66 Finding a Polynomial with Specified Zeros Find a
ied Zeros Find
polynomial of the specified degree that has the given zeros.
2111263. Degree 3; zeros -1, 1, 3
279300
64. Degree 4; zeros -2,0, 2, 4 laimonyjog od sbivib sw
c = 2
c = }
65. Degree 4; zeros -1, 1, 3, 5
66. Degree 5; zeros -2, -1, 0, 1, 2 viol
13AU
67-70 Polynomials with Specified Zeros Find a polynomial
of the specified degree that satisfies the given conditions.
67. Degree 4; zeros -2, 0, 1, 3; coefficient of x² is 4
68. Degree 4; zeros -1, 0, 2,; coefficient of x³ is 3
69. Degree 4; zeros -1, 1, V2; integer coefficients and
constant term 6 had
70. Degree 5; zeros -2, -1, 2, V5; integer coefficients and
constant term 40
SKILLS
71-74-
mial of t
71. Deg
-
73. De
C-
3.4
Transcribed Image Text:9. P(x) = -x³ - 2x + 6, 10. P(x) = x + 2r - 10x, 11. P(x) = 2x³ 3x² - 2x, 12. P(x) = 4x³ + 7x +9, 13. P(x) = 8x4 + 4x³ + 6x², 14. P(x) = 27x59x² + 3x²-3, 310 CHAPTER 3 Polynomial and Rational Functions 9-14 Division of Polynomials Two polynomials P and D are given. Use either synthetic or long division to divide P(x) by D(x), and express P in the form P(x) = D(x) Q(x) + R(x) D(x) = x + 1 D(x) = x-3 D(x) = 2x - 3 D(x) = 2x + 1 D(x) = 2x² + 1 P(x) = 6x² 40x6 + 16x³ - 200x4 - 60 - 69x² + 13x – 139 uol pergah to Calculate P(7) by (a) using synthetic division and (b) sub tuting x= 7 into the polynomial and evaluating directly. 53-56 Factor Theorem Use the Factor Theorem to show the der Theorem to Find the Value x-c is a factor of P(x) for the given value(s) of c. -53. P(x)= x³ 3x² + 3x - 1, c = 1 54. P(x) = x³ + 2x² - 3x - 10, A songsb 10 21 55. P(x) = 2x³ + 7x² + 6x-5, ona (d noils 25-38 Synthetic Division of Polynomials Find the quotient and remainder using synthetic division. 2x²5x + 3 15-24 Long Division of Polynomials remainder using long division. x²-3x + 7 x-2 15. 35. 36. 37. 17. 19. 21. 23. 25. 33. 27. 29. x² + 2x² + 2x + 1 x + 2 31, +³¹-8r+2 - x + 3 x² + 3x³ - 6 x-1 2x² + 3x² - 2x + 1 4x³ + 2x² - 2x - 3 2x + 1 +³+ 2x + 1 bna. x²-x+ 3 6x³ + 2x² + 22x (2 2x² + 5 +x²+x²+1 x² + 1 - 3 3x² + x x + 1 2019 bei 16. Inimonyfog x-001 noled x³ - 27 x - 3 6x + 10x³ + 5x² + x + 1 x + } 18. 20. 22. 24. 26. 28. 38. 30. 32. 34. D(x) = 3x²-3x + 1 Find the quotient and 3x³-12x²9x + 1 x - 5 **-x³+x²-x+ 2 x-2 x³9x² + 27x27 x-3 alsimon lot to noiivid @ 8-8 x³ + 2x² = x + 1 x + 3 x³ + 3x² + 4x + 3 3x + 6 x²-3x³ + x2 rẻ -5x+1 9x² - x + 5 3x² - 7x 2x³-7x4-13 4x² - 6x + 8. c = -1 -x²+x-4 = (x)Q *+1 bizob od led 4x²-3 mogaomoo 9 x-2 x 16 x + 2 39. P(x) = 4x² + 12x + 5, 40. P(x) = 2x² + 9x + 1, c= / 41. P(x)=x² + 3x² - 7x + 6₁ c = 2 39-51 Remainder Theorem Use synthetic division and the Remainder Theorem to evaluate P(c). 42. P(x) = x¹-x² + x + 5₁ c = -1 43. P(x) = x² + 2x²2 - 7, c = -2 44. P(x) = 2x³ - 21x² + 9x 200, c = 11 45. P(x) = 5x + 30x³ 40x² + 36x + 14, c = -1 46. P(x) = 6x² + 10x³ + x + 1, c = -2 47. P(x)=x²-3x² - 1, c = 3 48. P(x) = -2x + 7x³ + 40x4 - 7x² + 10x + 112, c= 49. P(x) = 3x³ + 4x² - 2x + 1, c = 3 50. P(x) = x¹ - x + 1, c = 1 51. P(x) = x³ + 2x²-3x - 8, c = 0.1 52. Remainder Theorem Let 56. P(x) = x + 3x³ 16x² - 27x + 63, c = 3, -3 ei Isimon yloq Belesbision for this probl 57-62 Factor Theorem Show that the given value(s) of car zeros of P(x), and find all other zeros of P(x). 57. P(x)= x³ + 2x²9x 18, c = -2 58. P(x) = x³ - 5x² - 2x + 10, c=5 59. P(x)=x²-x² - 11x + 15, c = 3 60. P(x) = 3x -x³-21x² - 11x + 6, c = -2, 61. P(x) = 3x - 8x³ - 14x² + 31x + 6, c = -2,3 62. P(x) = 2x13x³ + 7x² + 37x + 15, c = -1,3 63-66 Finding a Polynomial with Specified Zeros Find a ied Zeros Find polynomial of the specified degree that has the given zeros. 2111263. Degree 3; zeros -1, 1, 3 279300 64. Degree 4; zeros -2,0, 2, 4 laimonyjog od sbivib sw c = 2 c = } 65. Degree 4; zeros -1, 1, 3, 5 66. Degree 5; zeros -2, -1, 0, 1, 2 viol 13AU 67-70 Polynomials with Specified Zeros Find a polynomial of the specified degree that satisfies the given conditions. 67. Degree 4; zeros -2, 0, 1, 3; coefficient of x² is 4 68. Degree 4; zeros -1, 0, 2,; coefficient of x³ is 3 69. Degree 4; zeros -1, 1, V2; integer coefficients and constant term 6 had 70. Degree 5; zeros -2, -1, 2, V5; integer coefficients and constant term 40 SKILLS 71-74- mial of t 71. Deg - 73. De C- 3.4
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning