54. f(x) = x4 - 3x3 – x² – 12x - 20 part (a) all real %3D (Hint: One factor is x2 + 4.) OsEO Finding the Zeros of a Polynomial Function In Exercises 55-60, use the given zero to find all the zeros of the function. Function Zero 55. f(x) = x3 -x2 + 4x - 4 56. f(x) 2i $7-40, phing ros in ne all = 2x3 + 3x2 + 18x + 27 57. g(x) = x³ – 8x² + 25x - 26 58. g(x) = x3 + 9x² + 25x + 17 3i %3D 3 + 2i -4 + i 59. h(x) = x4 – 6x3 + 14x² – 18x + 9 %3D 1- /2i -2+ 3i 60. h(x) = x4 + x³ – 3x² – 13x + 14 Finding the Zeros of a Polynomial Function In Exercises 61-72, write the polynomial as the product of linear factors and list all the zeros of the function. 61. f(x) = x² + 36 ith 1 a 62. f(x) = x² + 49 63. h(x) = x² – 2x + 17 64. g(x) = x² + 10x + 17 nts 65. f(x) = x4 – 16 66. f(y) = y4 – 256 ny 67. f(z) = z2 - 2z + 2 %3D 68. h(x) = x3 - 3x2 + 4x - 2 69. g(x) = x3 - 3x2 + x + 5 70. f(x) = x³ – x² + x + 39 %3D 71. g(x) = x4 – 4x3 + 8x² - 16x + 16 %3D 72. h(x) = x4 + 6x3 + 10x2 + 6x + 9 A Finding the Zeros of a Polynomial Function In Exercises 73-78, find ali the zeros of the function. When there is an extended list of possible rational zeros, use a graphing utility to graph the function in order to disregard any of the possible rational zeros that are obviously not zeros of the function. 73. f(x) = x³ + 24x² + 214x + 740 5s2 + 5 562 12s – 263
54. f(x) = x4 - 3x3 – x² – 12x - 20 part (a) all real %3D (Hint: One factor is x2 + 4.) OsEO Finding the Zeros of a Polynomial Function In Exercises 55-60, use the given zero to find all the zeros of the function. Function Zero 55. f(x) = x3 -x2 + 4x - 4 56. f(x) 2i $7-40, phing ros in ne all = 2x3 + 3x2 + 18x + 27 57. g(x) = x³ – 8x² + 25x - 26 58. g(x) = x3 + 9x² + 25x + 17 3i %3D 3 + 2i -4 + i 59. h(x) = x4 – 6x3 + 14x² – 18x + 9 %3D 1- /2i -2+ 3i 60. h(x) = x4 + x³ – 3x² – 13x + 14 Finding the Zeros of a Polynomial Function In Exercises 61-72, write the polynomial as the product of linear factors and list all the zeros of the function. 61. f(x) = x² + 36 ith 1 a 62. f(x) = x² + 49 63. h(x) = x² – 2x + 17 64. g(x) = x² + 10x + 17 nts 65. f(x) = x4 – 16 66. f(y) = y4 – 256 ny 67. f(z) = z2 - 2z + 2 %3D 68. h(x) = x3 - 3x2 + 4x - 2 69. g(x) = x3 - 3x2 + x + 5 70. f(x) = x³ – x² + x + 39 %3D 71. g(x) = x4 – 4x3 + 8x² - 16x + 16 %3D 72. h(x) = x4 + 6x3 + 10x2 + 6x + 9 A Finding the Zeros of a Polynomial Function In Exercises 73-78, find ali the zeros of the function. When there is an extended list of possible rational zeros, use a graphing utility to graph the function in order to disregard any of the possible rational zeros that are obviously not zeros of the function. 73. f(x) = x³ + 24x² + 214x + 740 5s2 + 5 562 12s – 263
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Topic Video
Question
How do you answer 69?

Transcribed Image Text:54. f(x) = x4 - 3x3 – x² – 12x - 20
part (a)
all real
%3D
(Hint: One factor is x2 + 4.)
OsEO
Finding the Zeros of a Polynomial
Function In Exercises 55-60, use the given
zero to find all the zeros of the function.
Function
Zero
55. f(x) = x3 -x2 + 4x - 4
56. f(x)
2i
$7-40,
phing
ros in
ne all
= 2x3 + 3x2 + 18x + 27
57. g(x) = x³ – 8x² + 25x - 26
58. g(x) = x3 + 9x² + 25x + 17
3i
%3D
3 + 2i
-4 + i
59. h(x) = x4 – 6x3 + 14x² – 18x + 9
%3D
1- /2i
-2+ 3i
60. h(x) = x4 + x³ – 3x² – 13x + 14
Finding the Zeros of a Polynomial
Function In Exercises 61-72, write the
polynomial as the product of linear factors
and list all the zeros of the function.
61. f(x) = x² + 36
ith
1 a
62. f(x) = x² + 49
63. h(x) = x² – 2x + 17
64. g(x) = x² + 10x + 17
nts
65. f(x) = x4 – 16
66. f(y) = y4 – 256
ny
67. f(z) = z2 - 2z + 2
%3D
68. h(x) = x3 - 3x2 + 4x - 2
69. g(x) = x3 - 3x2 + x + 5
70. f(x) = x³ – x² + x + 39
%3D
71. g(x) = x4 – 4x3 + 8x² - 16x + 16
%3D
72. h(x) = x4 + 6x3 + 10x2 + 6x + 9
A Finding the Zeros of a Polynomial Function In
Exercises 73-78, find ali the zeros of the function. When
there is an extended list of possible rational zeros, use
a graphing utility to graph the function in order to
disregard any of the possible rational zeros that are
obviously not zeros of the function.
73. f(x) = x³ + 24x² + 214x + 740
5s2 + 5
562
12s –
263
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 6 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Recommended textbooks for you

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education