54 f(t)= -e eq if t <0 if t>0 (a < 0) HEL
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Find the fourier transform pair for the given function (Solve 54)
One example is given for reference . Must follow the same rule :
![Example 6.10: Fourier transform pair
Find the Fourier transform pair for
Solution
By Eq. (6.30), we have
Ch.6 Fourier Analysis
[0 if t<0
0 -
- if :>0
f(t)=<
1
f(a)=e-are-l dt = 1
f(0) = -√2! *
√√2.T
√√2r
The inverse Fourier transform is determined via Eq. (6.31), as
f(t)=
1
f(t)=
√√2.r
1 1
= a +i
1 (a-iw)(cosat +i sin cot)
a² +0²
_jax dw=
do-
1
X
(a > 0)
0
This is the complex Fourier integral representation of f(t). The real form of the Fourier integral is easily derived from
here as follows. Multiply and divide the integrand by the conjugate of a +ia, and use Euler's formula, to obtain
1
2л
18
1
a+ia
which is the real form of the Fourier integral for f(t).
I
1
a+io
1a cosat +ia sin at-iacos ax + @sin axt
2r
21-0
a² +0²
doo
el do
Since sin ot and acos x are odd functions of , and cos at and csin or are even functions of this reduces to
f(t)= a cosax+cosin ox
a² + a²
199
do](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff8a26d2b-a98c-4e69-930a-c3dd00f89658%2F7a0bd68e-b055-4b5e-ad2a-1f4f09e3ad3d%2F280uixe_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Example 6.10: Fourier transform pair
Find the Fourier transform pair for
Solution
By Eq. (6.30), we have
Ch.6 Fourier Analysis
[0 if t<0
0 -
- if :>0
f(t)=<
1
f(a)=e-are-l dt = 1
f(0) = -√2! *
√√2.T
√√2r
The inverse Fourier transform is determined via Eq. (6.31), as
f(t)=
1
f(t)=
√√2.r
1 1
= a +i
1 (a-iw)(cosat +i sin cot)
a² +0²
_jax dw=
do-
1
X
(a > 0)
0
This is the complex Fourier integral representation of f(t). The real form of the Fourier integral is easily derived from
here as follows. Multiply and divide the integrand by the conjugate of a +ia, and use Euler's formula, to obtain
1
2л
18
1
a+ia
which is the real form of the Fourier integral for f(t).
I
1
a+io
1a cosat +ia sin at-iacos ax + @sin axt
2r
21-0
a² +0²
doo
el do
Since sin ot and acos x are odd functions of , and cos at and csin or are even functions of this reduces to
f(t)= a cosax+cosin ox
a² + a²
199
do
![of u
54 f(t)=-
-at if t <0
if
t>0
eq
(a < 0)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff8a26d2b-a98c-4e69-930a-c3dd00f89658%2F7a0bd68e-b055-4b5e-ad2a-1f4f09e3ad3d%2F25jfpaf_processed.jpeg&w=3840&q=75)
Transcribed Image Text:of u
54 f(t)=-
-at if t <0
if
t>0
eq
(a < 0)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)