53. g(x) = (2x 47² +1 3x - 1 2 - du 3x 3x Hint: [³* ƒ(u) du = ſº¸ ƒ(u) du + √³* ƒ (u) du J2x 2x 54. g(x) = {1+2x ₁2xt sin t sin t dt
53. g(x) = (2x 47² +1 3x - 1 2 - du 3x 3x Hint: [³* ƒ(u) du = ſº¸ ƒ(u) du + √³* ƒ (u) du J2x 2x 54. g(x) = {1+2x ₁2xt sin t sin t dt
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
53&54
![53-56 Find the derivative of the function.
[3x U² 1
№2x _u² + 1
53. g(x)
=
du
3x
Hint: [2* f(u) du = ['_ f(u) du + [** ƒ(u) du]
*3x
√2x
J2x
0
1+2x
54. g(x) = {¹+²x t sin t dt
1-2x
55. h(x) = f*cos(1²) dt
1
56. g(x) -√2+ s dr
dt
14
=](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F46c94430-3e9b-4bb7-b903-bd65441247ec%2Fd44737cf-3a48-4011-86e6-f507bc7bb420%2Fvheogya_processed.png&w=3840&q=75)
Transcribed Image Text:53-56 Find the derivative of the function.
[3x U² 1
№2x _u² + 1
53. g(x)
=
du
3x
Hint: [2* f(u) du = ['_ f(u) du + [** ƒ(u) du]
*3x
√2x
J2x
0
1+2x
54. g(x) = {¹+²x t sin t dt
1-2x
55. h(x) = f*cos(1²) dt
1
56. g(x) -√2+ s dr
dt
14
=
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 5 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

