50. Find the missing side and then find the exact value of each trigonometric function. (Leave as a fraction, no decimals) sin A = sin C = 15 cos A = cos C = 9 tan A = tan C = B.
50. Find the missing side and then find the exact value of each trigonometric function. (Leave as a fraction, no decimals) sin A = sin C = 15 cos A = cos C = 9 tan A = tan C = B.
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Topic Video
Question
![---
### Trigonometric Functions Calculation
#### Problem Statement:
**Question 50:** Find the missing side and then find the **exact value** of each trigonometric function. *(Leave as a fraction, no decimals)*
---
#### Given Right Triangle:
- Hypotenuse (\(CA\)) = 15
- One leg (\(CB\)) = 9
##### Find:
- The other leg (\(AB\))
##### Trigonometric Functions:
\[
\sin A =
\]
\[
\cos A =
\]
\[
\tan A =
\]
\[
\sin C =
\]
\[
\cos C =
\]
\[
\tan C =
\]
---
#### Explanation of Diagram:
The diagram presents a right triangle \( \bigtriangleup ABC \) with:
- \( \angle B \) being the right angle (90 degrees).
- Hypotenuse \( CA \) is 15 units.
- One leg \( CB \) is 9 units.
To determine the values of the trigonometric functions, the length of the missing side \( AB \) can be found using the Pythagorean Theorem.
\[
AB^2 + CB^2 = CA^2
\]
\[
AB^2 + 9^2 = 15^2
\]
\[
AB^2 + 81 = 225
\]
\[
AB^2 = 225 - 81
\]
\[
AB^2 = 144
\]
\[
AB = \sqrt{144}
\]
\[
AB = 12
\]
Thus, the lengths of the sides of triangle \( \bigtriangleup ABC \) are:
- \( AB = 12 \) units
- \( CB = 9 \) units
- \( CA = 15 \) units
With these values, the trigonometric functions can be calculated.
For angle \( A \):
\[
\sin A = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{CB}{CA} = \frac{9}{15} = \frac{3}{5}
\]
\[
\cos A = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AB}{CA} = \frac{12}{15} = \frac{4}{5}
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff22e570d-477e-4d36-ac45-2bc1116babdf%2F2f0166e2-b9b3-4b82-bfbb-3d9f590551ad%2Fmyxb664_processed.png&w=3840&q=75)
Transcribed Image Text:---
### Trigonometric Functions Calculation
#### Problem Statement:
**Question 50:** Find the missing side and then find the **exact value** of each trigonometric function. *(Leave as a fraction, no decimals)*
---
#### Given Right Triangle:
- Hypotenuse (\(CA\)) = 15
- One leg (\(CB\)) = 9
##### Find:
- The other leg (\(AB\))
##### Trigonometric Functions:
\[
\sin A =
\]
\[
\cos A =
\]
\[
\tan A =
\]
\[
\sin C =
\]
\[
\cos C =
\]
\[
\tan C =
\]
---
#### Explanation of Diagram:
The diagram presents a right triangle \( \bigtriangleup ABC \) with:
- \( \angle B \) being the right angle (90 degrees).
- Hypotenuse \( CA \) is 15 units.
- One leg \( CB \) is 9 units.
To determine the values of the trigonometric functions, the length of the missing side \( AB \) can be found using the Pythagorean Theorem.
\[
AB^2 + CB^2 = CA^2
\]
\[
AB^2 + 9^2 = 15^2
\]
\[
AB^2 + 81 = 225
\]
\[
AB^2 = 225 - 81
\]
\[
AB^2 = 144
\]
\[
AB = \sqrt{144}
\]
\[
AB = 12
\]
Thus, the lengths of the sides of triangle \( \bigtriangleup ABC \) are:
- \( AB = 12 \) units
- \( CB = 9 \) units
- \( CA = 15 \) units
With these values, the trigonometric functions can be calculated.
For angle \( A \):
\[
\sin A = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{CB}{CA} = \frac{9}{15} = \frac{3}{5}
\]
\[
\cos A = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AB}{CA} = \frac{12}{15} = \frac{4}{5}
\]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning