50, dex(+) = -25 (+ + 2) + 25 (1-0) + 15 (t-1) at 2 = -√(x + 2) + 251f) + 5lt-2) By using differentiation in time domain property, the fourier tramform is (jw) ² x 1₂0) = -1.e d2x(1) dt 2 (j)² w²x1w) = rejw2 x1w) 1 = W2 - 402 w2 jw2 W2 ما لم +20 + -j24 +2+e 2+ e-J200 2 م -pj2w] ازم 2 + (- : + (-p) ₂20 + p-j²w)] J [e-j²¹0-e-j240)] x1w) [2-2j sin (220)] How did he get the value inside the circle

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
i need the answer quickly
50,
dex(+) = -25 (+ + 2) + 25 (1-0) + 15 (t-1)
at 2
d2 x (1)
dt 2
= -√(x + 2) + 251f) + 5lt-2)
By using differentiation in time domain property,
the fourier tramform is
(jw) ² x 120) = -1.e
(j)² w²x1w) = jw2
x1w)
1
=
W2
-
402
w2
jw2
W2
ما لم +20 +
-j24
+2+e
2+ €200
2
م
-pj2w]
ازم
2 + (-1
- + (-pj ₂0 + p-j2w)]
[e-j²¹0-e-j240)]
x1w) [2-2j sin (220)]
How did he get the
value inside the circle
Transcribed Image Text:50, dex(+) = -25 (+ + 2) + 25 (1-0) + 15 (t-1) at 2 d2 x (1) dt 2 = -√(x + 2) + 251f) + 5lt-2) By using differentiation in time domain property, the fourier tramform is (jw) ² x 120) = -1.e (j)² w²x1w) = jw2 x1w) 1 = W2 - 402 w2 jw2 W2 ما لم +20 + -j24 +2+e 2+ €200 2 م -pj2w] ازم 2 + (-1 - + (-pj ₂0 + p-j2w)] [e-j²¹0-e-j240)] x1w) [2-2j sin (220)] How did he get the value inside the circle
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,