5.27 An unreliable electronic system has two components hooked up in parallel. The lifetimes X and Y of the two components have the joint density f(x, y) = e for 0 < x≤ y < oo. The system goes down when both components have failed. What is the joint density of X and Y - X? What are the marginal densities of X and Y - X? What is the density function of the time until the system goes down?

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question

questions number 5.27

5.3 Marginal Probability Densities
221
5.27 An unreliable electronic system has two components hooked up in
parallel. The lifetimes X and Y of the two components have the joint
density f(x, y) = ey for 0 < x≤ y < oo. The system goes down when
both components have failed. What is the joint density of X and Y-X?
What are the marginal densities of X and Y - X? What is the density
function of the time until the system goes down?
5.3.1 Independence of Jointly Distributed Random Variables
A general condition for the independence of the jointly distributed random
variables X and Y is stated in Definition 3.2. In terms of the marginal densities,
the continuous analogue of Rule 3.7 for the discrete case is:
Rule 5.2 The jointly distributed random variables X and Y are independent
Transcribed Image Text:5.3 Marginal Probability Densities 221 5.27 An unreliable electronic system has two components hooked up in parallel. The lifetimes X and Y of the two components have the joint density f(x, y) = ey for 0 < x≤ y < oo. The system goes down when both components have failed. What is the joint density of X and Y-X? What are the marginal densities of X and Y - X? What is the density function of the time until the system goes down? 5.3.1 Independence of Jointly Distributed Random Variables A general condition for the independence of the jointly distributed random variables X and Y is stated in Definition 3.2. In terms of the marginal densities, the continuous analogue of Rule 3.7 for the discrete case is: Rule 5.2 The jointly distributed random variables X and Y are independent
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps

Blurred answer
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON