5. y"-y=1-H(t-2), y(0) = 1, y'(0) = 0. +28(+ 2) (0) 101206 0 (0)7

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

#5 please 

In Problems 4-7, use the Laplace transform to solve the IVP. You can use the following dictio-
nary:
L{eat} =
L{cos(wt)} =
L{sin(wt)} =
1
8-a
8
82 +w21
لیا
8² +6²
n!
gn+1, n = 0, 1, 2,...,
L{t"} =
L{8(t-T)} = e-ST
e-st
L{H(t - T)}
8
and the following list of rules (where F(s) = L{f(t)}):
L{f'(t)} = sF(s) - f(0),
L{f"(t)} = s²F(s) - sf (0) - f'(0),
c { [ * f(u) du} = F(s),
d
- F(s),
ds
L{tf(t)} =
L{f(t-T)H(t-T)} = e-TF(s),
L{ect f(t)} = F(s - c).
4. y' + 2yet, y(0) = 0.
5. y" -y 1-H(t− 2), y(0) = 1, y'(0) = 0.
6. y" - 2y + y = t²8(t− 3), y(0) = 0, y'(0) = 0.
y=(t-3)H(t-3), y(0) = 1.
7. y'
Transcribed Image Text:In Problems 4-7, use the Laplace transform to solve the IVP. You can use the following dictio- nary: L{eat} = L{cos(wt)} = L{sin(wt)} = 1 8-a 8 82 +w21 لیا 8² +6² n! gn+1, n = 0, 1, 2,..., L{t"} = L{8(t-T)} = e-ST e-st L{H(t - T)} 8 and the following list of rules (where F(s) = L{f(t)}): L{f'(t)} = sF(s) - f(0), L{f"(t)} = s²F(s) - sf (0) - f'(0), c { [ * f(u) du} = F(s), d - F(s), ds L{tf(t)} = L{f(t-T)H(t-T)} = e-TF(s), L{ect f(t)} = F(s - c). 4. y' + 2yet, y(0) = 0. 5. y" -y 1-H(t− 2), y(0) = 1, y'(0) = 0. 6. y" - 2y + y = t²8(t− 3), y(0) = 0, y'(0) = 0. y=(t-3)H(t-3), y(0) = 1. 7. y'
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,