5. Solve the given equation by using the variation of parameter. y" + y = sec(x) tan (x). Using (i) Complex ミ○ -> yc=Ci Cos . + Ca Sin ... (ii) + Uz. ya Variation of Parameter w=1 第| u, 11以 yı ya U, If yå y2 y: f コ ly,' yo Solve
5. Solve the given equation by using the variation of parameter. y" + y = sec(x) tan (x). Using (i) Complex ミ○ -> yc=Ci Cos . + Ca Sin ... (ii) + Uz. ya Variation of Parameter w=1 第| u, 11以 yı ya U, If yå y2 y: f コ ly,' yo Solve
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![**Title: Solving Differential Equations Using Variation of Parameters**
**Problem Statement:**
Solve the given equation using the variation of parameters:
\[ y'' + y = \sec(x) \tan(x) \]
**Solution Steps:**
**Step 1: Homogeneous Solution (yc)**
\[ y_c = y_h + y_g = 0 \]
\[ y_c = C_1 \cos x + C_2 \sin x \]
**Step 2: Particular Solution (yp) Using Variation of Parameters**
\[ y_p = U_1 y_1 + U_2 y_2 \]
Here,
\[ W = \begin{vmatrix}
y_1 & y_2 \\
y_1' & y_2'
\end{vmatrix} \]
where \( y_1 \) and \( y_2 \) are solutions to the homogeneous equation.
**Variation of Parameters:**
For \( U_1 \):
\[ U_1' = \frac{\begin{vmatrix}
0 & y_2 \\
f & y_2'
\end{vmatrix}}{W} \]
For \( U_2 \):
\[ U_2' = \frac{\begin{vmatrix}
y_1 & 0 \\
y_1' & f
\end{vmatrix}}{W} \]
Here, \( f = \sec(x) \tan(x) \) and \( W \) is the Wronskian determinant of the solutions to the homogeneous equation.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0c88e3a7-d6d9-4180-9e78-6a7df1a2f887%2Faf8f4a1a-eba3-4b45-b8a3-2c4cad0ba0dc%2Fd4wecld_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Title: Solving Differential Equations Using Variation of Parameters**
**Problem Statement:**
Solve the given equation using the variation of parameters:
\[ y'' + y = \sec(x) \tan(x) \]
**Solution Steps:**
**Step 1: Homogeneous Solution (yc)**
\[ y_c = y_h + y_g = 0 \]
\[ y_c = C_1 \cos x + C_2 \sin x \]
**Step 2: Particular Solution (yp) Using Variation of Parameters**
\[ y_p = U_1 y_1 + U_2 y_2 \]
Here,
\[ W = \begin{vmatrix}
y_1 & y_2 \\
y_1' & y_2'
\end{vmatrix} \]
where \( y_1 \) and \( y_2 \) are solutions to the homogeneous equation.
**Variation of Parameters:**
For \( U_1 \):
\[ U_1' = \frac{\begin{vmatrix}
0 & y_2 \\
f & y_2'
\end{vmatrix}}{W} \]
For \( U_2 \):
\[ U_2' = \frac{\begin{vmatrix}
y_1 & 0 \\
y_1' & f
\end{vmatrix}}{W} \]
Here, \( f = \sec(x) \tan(x) \) and \( W \) is the Wronskian determinant of the solutions to the homogeneous equation.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)