5. Show that f(x) and g(x) are inverse functions. and g(x)=√√8x f(x) = 2²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem 5: Verify Inverse Functions**

**Task:** Show that \( f(x) \) and \( g(x) \) are inverse functions.

**Functions Given:**

- \( f(x) = \frac{x^{3}}{8} \)

- \( g(x) = \sqrt[3]{8x} \)

---

**To prove that \( f(x) \) and \( g(x) \) are inverse functions, you need to demonstrate the following:**

1. \( f(g(x)) = x \)
2. \( g(f(x)) = x \)

### Solution:

1. **Compute \( f(g(x)) \):**
   - Substitute \( g(x) \) into \( f(x) \): 
   \[
   f(g(x)) = f\left(\sqrt[3]{8x}\right) = \frac{(\sqrt[3]{8x})^3}{8} = \frac{8x}{8} = x
   \]

2. **Compute \( g(f(x)) \):**
   - Substitute \( f(x) \) into \( g(x) \):
   \[
   g(f(x)) = g\left(\frac{x^{3}}{8}\right) = \sqrt[3]{8 \times \frac{x^{3}}{8}} = \sqrt[3]{x^{3}} = x
   \]

Since both compositions \( f(g(x)) = x \) and \( g(f(x)) = x \) hold true, \( f(x) \) and \( g(x) \) are indeed inverse functions.
Transcribed Image Text:**Problem 5: Verify Inverse Functions** **Task:** Show that \( f(x) \) and \( g(x) \) are inverse functions. **Functions Given:** - \( f(x) = \frac{x^{3}}{8} \) - \( g(x) = \sqrt[3]{8x} \) --- **To prove that \( f(x) \) and \( g(x) \) are inverse functions, you need to demonstrate the following:** 1. \( f(g(x)) = x \) 2. \( g(f(x)) = x \) ### Solution: 1. **Compute \( f(g(x)) \):** - Substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f\left(\sqrt[3]{8x}\right) = \frac{(\sqrt[3]{8x})^3}{8} = \frac{8x}{8} = x \] 2. **Compute \( g(f(x)) \):** - Substitute \( f(x) \) into \( g(x) \): \[ g(f(x)) = g\left(\frac{x^{3}}{8}\right) = \sqrt[3]{8 \times \frac{x^{3}}{8}} = \sqrt[3]{x^{3}} = x \] Since both compositions \( f(g(x)) = x \) and \( g(f(x)) = x \) hold true, \( f(x) \) and \( g(x) \) are indeed inverse functions.
Expert Solution
Step 1: First we find f^(-1)(x)

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,