5. Let X, be a RSR (mod n). Prove that E e(E/n) EXn is a multiplicative function of n, where e(x) = e²riz_

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
5. Let X, be a RSR (mod n). Prove that
E e(E/n)
EEXn
is a multiplicative function of n, where
e(x) = e²riz
3D
Hint: Use the Chinese Remainder Theorem.
Transcribed Image Text:5. Let X, be a RSR (mod n). Prove that E e(E/n) EEXn is a multiplicative function of n, where e(x) = e²riz 3D Hint: Use the Chinese Remainder Theorem.
Expert Solution
Step 1

Given Xn be a RSRmod n.

We know that RSRmod n=x: 0<x<n, gcdx,n=1.

Now consider the function fn=ξXneξn, where ex=e2πix.

Let m,n be two arbitrary numbers.

Therefore:

Xn=x: 0<x<n, gcdx,n=1 and

Xm=x: 0<x<m, gcdx,m=1.

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,