5. Let w = f(u, v), where u = x + y and v = x - y. Show that дw ди дх ду = () - ( ) 2

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
5. Let \( w = f(u, v) \), where \( u = x + y \) and \( v = x - y \). Show that

\[
\frac{\partial w}{\partial x} \frac{\partial w}{\partial y} = \left( \frac{\partial w}{\partial u} \right)^2 - \left( \frac{\partial w}{\partial v} \right)^2
\]
Transcribed Image Text:5. Let \( w = f(u, v) \), where \( u = x + y \) and \( v = x - y \). Show that \[ \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} = \left( \frac{\partial w}{\partial u} \right)^2 - \left( \frac{\partial w}{\partial v} \right)^2 \]
Expert Solution
Step 1

Given,

w=f(u, v) where u=x + y and v=x - y

To prove:

wxwy=wu2-wv2

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning