5. Let G be a group and define z" z * *** *z for n factors c, where z E G and n E Z+. (a) Suppose that G is abelian. Give a mathematical induction proof that (r * y)" = (x") * (y") for all x, y E G. (b) Now, for G not necessarily abelian, prove the following: if (x*y)2 = (x²) * (y²) then the elements %3D x and y commute, i.e. a * y = y * x.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
5. Let G be a group and define z" = z * z * *.. * z for n factors c, where z E G and n E Z+.
(a) Suppose that G is abelian. Give a mathematical induction proof that (x * y)" = (x") * (y") for
all x, y E G.
(b) Now, for G not necessarily abelian, prove the following: if (x*y)² = (x²) * (y²) then the elements
x and y commute, i.e. x * y = y * x.
Transcribed Image Text:5. Let G be a group and define z" = z * z * *.. * z for n factors c, where z E G and n E Z+. (a) Suppose that G is abelian. Give a mathematical induction proof that (x * y)" = (x") * (y") for all x, y E G. (b) Now, for G not necessarily abelian, prove the following: if (x*y)² = (x²) * (y²) then the elements x and y commute, i.e. x * y = y * x.
Expert Solution
Step 1

Given that G is a group.

Also zn is defined as follows.

zn=z*z*z*...*z

(a) Use mathematical induction to prove x*yn=xn*yn for all x,yG.

P(n): x*yn=xn*yn for all x,yG.Base Case: n=1.x*y1=x*yx1*y1=x*yThus, x*y1=x1*y1.Induction Step:Assume that P(k) is true. That is assume that x*yk=xk*yk. Assume that n=k is true and show that P(n) is true for n=k+1.Consider the LHS of the statement P(k+1): x*yk+1=xk+1*yk+1.x*yk+1=x*yk*(x*y)               =xk*yk*x*y By assumption that P(k) is true.               =xk*x*yk*y  G is abelian               =xk+1*yk+1Thus the statement is true for n=k+1.

Thus by the principle of mathematical induction the given statement is true.

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Groups
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,