5. In some biological applications, population size P as a function of time t may be modeled as A 1+ Be-ct* where A, B, c> 0. Evaluate the following. P (t) (a) P (0) (b) lim P (t)
5. In some biological applications, population size P as a function of time t may be modeled as A 1+ Be-ct* where A, B, c> 0. Evaluate the following. P (t) (a) P (0) (b) lim P (t)
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Modeling Population Size in Biological Applications
In certain biological applications, the population size \(P\) as a function of time \(t\) can be modeled using the following equation:
\[
P(t) = \frac{A}{1 + Be^{-ct}}
\]
where \(A\), \(B\), and \(c\) are positive constants (\(A, B, c > 0\)). The task is to evaluate the following:
1. \( P(0) \)
2. \( \lim_{{t \to \infty}} P(t) \)
### Key Points to Consider:
- \( P(t) \) represents the population size at time \( t \).
- \( A \), \( B \), and \( c \) are parameters that affect the shape and behavior of the population curve.
#### (a) Evaluate \( P(0) \)
To find the population size at time \( t = 0 \):
Substitute \( t = 0 \) into the equation:
\[
P(0) = \frac{A}{1 + Be^{-c \cdot 0}}
\]
Simplify the exponent:
\[
P(0) = \frac{A}{1 + B \cdot 1}
\]
Thus:
\[
P(0) = \frac{A}{1 + B}
\]
#### (b) Evaluate \( \lim_{{t \to \infty}} P(t) \)
To find the population size as time \( t \) approaches infinity:
Evaluate the limit as \( t \to \infty \):
\[
\lim_{{t \to \infty}} P(t) = \lim_{{t \to \infty}} \frac{A}{1 + Be^{-ct}}
\]
As \( t \to \infty \), \( e^{-ct} \to 0 \) (since \( c > 0 \)):
\[
\lim_{{t \to \infty}} P(t) = \frac{A}{1 + B \cdot 0}
\]
Thus:
\[
\lim_{{t \to \infty}} P(t) = \frac{A}{1} = A
\]
### Summary
- The population size at time \( t = 0 \) is \( P(0) = \frac{](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6484a2ba-7b6c-4144-bd9b-1f2d784a131b%2F40628f8a-1c51-4ec6-89e3-c403cdb79a38%2F7rvh8p_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Modeling Population Size in Biological Applications
In certain biological applications, the population size \(P\) as a function of time \(t\) can be modeled using the following equation:
\[
P(t) = \frac{A}{1 + Be^{-ct}}
\]
where \(A\), \(B\), and \(c\) are positive constants (\(A, B, c > 0\)). The task is to evaluate the following:
1. \( P(0) \)
2. \( \lim_{{t \to \infty}} P(t) \)
### Key Points to Consider:
- \( P(t) \) represents the population size at time \( t \).
- \( A \), \( B \), and \( c \) are parameters that affect the shape and behavior of the population curve.
#### (a) Evaluate \( P(0) \)
To find the population size at time \( t = 0 \):
Substitute \( t = 0 \) into the equation:
\[
P(0) = \frac{A}{1 + Be^{-c \cdot 0}}
\]
Simplify the exponent:
\[
P(0) = \frac{A}{1 + B \cdot 1}
\]
Thus:
\[
P(0) = \frac{A}{1 + B}
\]
#### (b) Evaluate \( \lim_{{t \to \infty}} P(t) \)
To find the population size as time \( t \) approaches infinity:
Evaluate the limit as \( t \to \infty \):
\[
\lim_{{t \to \infty}} P(t) = \lim_{{t \to \infty}} \frac{A}{1 + Be^{-ct}}
\]
As \( t \to \infty \), \( e^{-ct} \to 0 \) (since \( c > 0 \)):
\[
\lim_{{t \to \infty}} P(t) = \frac{A}{1 + B \cdot 0}
\]
Thus:
\[
\lim_{{t \to \infty}} P(t) = \frac{A}{1} = A
\]
### Summary
- The population size at time \( t = 0 \) is \( P(0) = \frac{
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning