Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Topic Video
Question
![### Question 5
If \( \mathbf{r} = \langle x, y, z \rangle \) and \( \mathbf{r_0} = \langle x_0, y_0, z_0 \rangle \), describe precisely the set of all points \( (x, y, z) \) such that
\[ |\mathbf{r} - \mathbf{r_0}| = 1 \]
### Answer Explanation
This question asks you to describe the set of all points \((x, y, z)\) that are at a distance of 1 unit from a given point \((x_0, y_0, z_0)\). This set of points forms a sphere with radius 1 centered at the point \((x_0, y_0, z_0)\).
In mathematical terms, the distance between any point \((x, y, z)\) and a fixed point \((x_0, y_0, z_0)\) in three-dimensional space is given by:
\[ ((x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2)^{1/2} \]
For the distance to be equal to 1,
\[ \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2} = 1 \]
Squaring both sides, we get:
\[ (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = 1 \]
Thus, the set of all points \( (x, y, z) \) that satisfy this equation forms a sphere with radius 1 centered at \((x_0, y_0, z_0)\).
This question illustrates the concept of the equation of a sphere and is fundamental in understanding the geometry of spheres in three-dimensional space.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F333de6cc-3da3-4bcc-9995-6ee1769198c2%2F4e1e2184-ac55-41e2-8594-0c73ae87dc98%2F2cq6qes.jpeg&w=3840&q=75)
Transcribed Image Text:### Question 5
If \( \mathbf{r} = \langle x, y, z \rangle \) and \( \mathbf{r_0} = \langle x_0, y_0, z_0 \rangle \), describe precisely the set of all points \( (x, y, z) \) such that
\[ |\mathbf{r} - \mathbf{r_0}| = 1 \]
### Answer Explanation
This question asks you to describe the set of all points \((x, y, z)\) that are at a distance of 1 unit from a given point \((x_0, y_0, z_0)\). This set of points forms a sphere with radius 1 centered at the point \((x_0, y_0, z_0)\).
In mathematical terms, the distance between any point \((x, y, z)\) and a fixed point \((x_0, y_0, z_0)\) in three-dimensional space is given by:
\[ ((x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2)^{1/2} \]
For the distance to be equal to 1,
\[ \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2} = 1 \]
Squaring both sides, we get:
\[ (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = 1 \]
Thus, the set of all points \( (x, y, z) \) that satisfy this equation forms a sphere with radius 1 centered at \((x_0, y_0, z_0)\).
This question illustrates the concept of the equation of a sphere and is fundamental in understanding the geometry of spheres in three-dimensional space.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning