(5). Find the area of the largest rectangle that can be inscribed by the region bound by the 4-x graph of f(x)= and the coordinate axes in the first quadrant. What is the maximum 2+x area? What are the dimensions of the rectangle? 0
(5). Find the area of the largest rectangle that can be inscribed by the region bound by the 4-x graph of f(x)= and the coordinate axes in the first quadrant. What is the maximum 2+x area? What are the dimensions of the rectangle? 0
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Maximizing the Area of an Inscribed Rectangle**
**Problem Statement:**
Find the area of the largest rectangle that can be inscribed by the region bound by the graph of \( f(x) = \frac{4 - x}{2 + x} \) and the coordinate axes in the first quadrant. What is the maximum area? What are the dimensions of the rectangle?
**Graph Explanation:**
The graph given shows the function \( f(x) = \frac{4 - x}{2 + x} \) plotted in the first quadrant. The function is a hyperbola that starts high on the y-axis and curves downward as x increases. There is a shaded purple rectangle inscribed under this curve, touching both the y-axis and the x-axis, and extending upward to meet the curve at a certain point.
**Steps to Solve:**
1. Determine the dimensions of the rectangle in terms of \( x \).
2. Use the function to express the height of the rectangle.
3. Set up the area function in terms of \( x \).
4. Use calculus (take the derivative and set it to zero) to find the point at which the area is maximized.
5. Verify the dimensions and compute the maximum area.
**Mathematical Formulation:**
1. The width of the rectangle is \( x \).
2. The height of the rectangle is \( f(x) = \frac{4 - x}{2 + x} \).
3. The area \( A(x) \) of the rectangle can be expressed as:
\[ A(x) = x \cdot f(x) = x \cdot \frac{4 - x}{2 + x} \]
4. To maximize \( A(x) \), take the derivative \( A'(x) \) and set it to zero:
\[ A'(x) = \text{0} \]
5. Solve for \( x \) to find the dimensions giving the maximum area.
**Conclusion:**
By finding the appropriate value of \( x \), one can determine the maximum inscribed rectangle's area and dimensions. This problem involves optimization techniques commonly covered in higher-level calculus courses.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F99284a24-5b6d-4c49-8bfd-674d8761bb54%2F41837186-1476-4101-ac50-1a8d60bcb4ce%2F1kuqv1h_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Maximizing the Area of an Inscribed Rectangle**
**Problem Statement:**
Find the area of the largest rectangle that can be inscribed by the region bound by the graph of \( f(x) = \frac{4 - x}{2 + x} \) and the coordinate axes in the first quadrant. What is the maximum area? What are the dimensions of the rectangle?
**Graph Explanation:**
The graph given shows the function \( f(x) = \frac{4 - x}{2 + x} \) plotted in the first quadrant. The function is a hyperbola that starts high on the y-axis and curves downward as x increases. There is a shaded purple rectangle inscribed under this curve, touching both the y-axis and the x-axis, and extending upward to meet the curve at a certain point.
**Steps to Solve:**
1. Determine the dimensions of the rectangle in terms of \( x \).
2. Use the function to express the height of the rectangle.
3. Set up the area function in terms of \( x \).
4. Use calculus (take the derivative and set it to zero) to find the point at which the area is maximized.
5. Verify the dimensions and compute the maximum area.
**Mathematical Formulation:**
1. The width of the rectangle is \( x \).
2. The height of the rectangle is \( f(x) = \frac{4 - x}{2 + x} \).
3. The area \( A(x) \) of the rectangle can be expressed as:
\[ A(x) = x \cdot f(x) = x \cdot \frac{4 - x}{2 + x} \]
4. To maximize \( A(x) \), take the derivative \( A'(x) \) and set it to zero:
\[ A'(x) = \text{0} \]
5. Solve for \( x \) to find the dimensions giving the maximum area.
**Conclusion:**
By finding the appropriate value of \( x \), one can determine the maximum inscribed rectangle's area and dimensions. This problem involves optimization techniques commonly covered in higher-level calculus courses.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning
Expert Answers to Latest Homework Questions
Q: None
Q: Niro Corp. is considering a new four-year expansion project that requires an initial fixed asset…
Q: I need help with this solution and general accounting
Q: Why does organizational learning affect accounting evolution? a) Evolution creates problems b)…
Q: Felix Financial Services lent a corporate client $152,000 at an annual interest rate of 6.5% on…
Q: I need help with this general accounting question using the proper accounting approach.
Q: Niro Corp. is considering a new four-year expansion project that requires an initial fixed asset…
Q: Hello tutor solve this question and accounting question
Q: Need answer
Q: Can you help me with General accounting question?
Q: Given answer with step by step calculation general accounting question
Q: Please post this question in Account tutors feed
Q: Please show me the correct way to solve this financial accounting problem with accurate methods.
Q: Expert of Account Solve this asap
Q: A business has a profit margin of 4.5% and an equity multiplier of
1.8. Its sales are $250 million,…
Q: Can you please solve this questions
Q: None
Q: Thompson Manufacturing's January 1, 2024, finished goods
inventory was $120,000. January 1, 2025,…
Q: I need help with this problem and general accounting question
Q: MCQ
Q: What is the OCF for the project ??