(5). Find the area of the largest rectangle that can be inscribed by the region bound by the 4-x graph of f(x)= and the coordinate axes in the first quadrant. What is the maximum 2+x area? What are the dimensions of the rectangle? 0
(5). Find the area of the largest rectangle that can be inscribed by the region bound by the 4-x graph of f(x)= and the coordinate axes in the first quadrant. What is the maximum 2+x area? What are the dimensions of the rectangle? 0
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Maximizing the Area of an Inscribed Rectangle**
**Problem Statement:**
Find the area of the largest rectangle that can be inscribed by the region bound by the graph of \( f(x) = \frac{4 - x}{2 + x} \) and the coordinate axes in the first quadrant. What is the maximum area? What are the dimensions of the rectangle?
**Graph Explanation:**
The graph given shows the function \( f(x) = \frac{4 - x}{2 + x} \) plotted in the first quadrant. The function is a hyperbola that starts high on the y-axis and curves downward as x increases. There is a shaded purple rectangle inscribed under this curve, touching both the y-axis and the x-axis, and extending upward to meet the curve at a certain point.
**Steps to Solve:**
1. Determine the dimensions of the rectangle in terms of \( x \).
2. Use the function to express the height of the rectangle.
3. Set up the area function in terms of \( x \).
4. Use calculus (take the derivative and set it to zero) to find the point at which the area is maximized.
5. Verify the dimensions and compute the maximum area.
**Mathematical Formulation:**
1. The width of the rectangle is \( x \).
2. The height of the rectangle is \( f(x) = \frac{4 - x}{2 + x} \).
3. The area \( A(x) \) of the rectangle can be expressed as:
\[ A(x) = x \cdot f(x) = x \cdot \frac{4 - x}{2 + x} \]
4. To maximize \( A(x) \), take the derivative \( A'(x) \) and set it to zero:
\[ A'(x) = \text{0} \]
5. Solve for \( x \) to find the dimensions giving the maximum area.
**Conclusion:**
By finding the appropriate value of \( x \), one can determine the maximum inscribed rectangle's area and dimensions. This problem involves optimization techniques commonly covered in higher-level calculus courses.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F99284a24-5b6d-4c49-8bfd-674d8761bb54%2F41837186-1476-4101-ac50-1a8d60bcb4ce%2F1kuqv1h_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Maximizing the Area of an Inscribed Rectangle**
**Problem Statement:**
Find the area of the largest rectangle that can be inscribed by the region bound by the graph of \( f(x) = \frac{4 - x}{2 + x} \) and the coordinate axes in the first quadrant. What is the maximum area? What are the dimensions of the rectangle?
**Graph Explanation:**
The graph given shows the function \( f(x) = \frac{4 - x}{2 + x} \) plotted in the first quadrant. The function is a hyperbola that starts high on the y-axis and curves downward as x increases. There is a shaded purple rectangle inscribed under this curve, touching both the y-axis and the x-axis, and extending upward to meet the curve at a certain point.
**Steps to Solve:**
1. Determine the dimensions of the rectangle in terms of \( x \).
2. Use the function to express the height of the rectangle.
3. Set up the area function in terms of \( x \).
4. Use calculus (take the derivative and set it to zero) to find the point at which the area is maximized.
5. Verify the dimensions and compute the maximum area.
**Mathematical Formulation:**
1. The width of the rectangle is \( x \).
2. The height of the rectangle is \( f(x) = \frac{4 - x}{2 + x} \).
3. The area \( A(x) \) of the rectangle can be expressed as:
\[ A(x) = x \cdot f(x) = x \cdot \frac{4 - x}{2 + x} \]
4. To maximize \( A(x) \), take the derivative \( A'(x) \) and set it to zero:
\[ A'(x) = \text{0} \]
5. Solve for \( x \) to find the dimensions giving the maximum area.
**Conclusion:**
By finding the appropriate value of \( x \), one can determine the maximum inscribed rectangle's area and dimensions. This problem involves optimization techniques commonly covered in higher-level calculus courses.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning
Expert Answers to Latest Homework Questions
Q: Answer please
Q: need help this question
Q: need help this question solution
Q: calculate the total contribution margin, contribution margin per unit , and contribution margin…
Q: What was the company's revenue for the year?
Q: Compute the price/earnings ratio
Q: Solve this questions?
Q: what is the gross profit margin? please fast give me answer
Q: Harlan Corp. produced 2,000 units during the month.
• Direct materials: $45 per unit
• Direct labor:…
Q: what is the degree of operating leverage?? do fast answer please
Q: Provide best solution please
Q: Accounting?
Q: What is the weighted average cost per unit ?
Q: The 2004 presidential election exit polls from the critical state of Ohio provided the following…
Q: I am trying to find the accurate solution to this financial accounting problem with appropriate…
Q: provide correct option with calculation step by step
Q: A business has the following balances: Cash $10,000, Accounts Receivable $5,000, Equipment $20,000,…
Q: Can you explain the steps for solving this General accounting question accurately?
Q: hello tutor please help me
Q: 1. The yield of a chemical process is being studied. From previous experience, yield is known to be…
Q: The Caldwell Division's operating data for the
year 2019 is as follows:
•
Return on investment = 14%…