5. Find L{f(t)} a. f(t) = sin?(t) + t b. f(t) = n² – 8e¬2t + (et + 1)² | c. f(t) = F, sin yt -cos /v2t , Fo, y E R 4 COS V

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
5. Find L{f(t)}
a. f(t) = sin²(t) + t
b. f(t) = n² – 8e-
2t + (et + 1)2
c. f(t) = F, sin yt -cos /v2t , Fo,Y E R
4
COS
2
d. f(t)
t7/2
=
Transcribed Image Text:5. Find L{f(t)} a. f(t) = sin²(t) + t b. f(t) = n² – 8e- 2t + (et + 1)2 c. f(t) = F, sin yt -cos /v2t , Fo,Y E R 4 COS 2 d. f(t) t7/2 =
Expert Solution
Step 1

As per our limit we can solve only first three subdivisions if you want the answer for other subdivision kindly repost the question and mention the subdivision to be solved.

a) f(t)=sin2t+tsin2t+t=sin2t+tWe know that cos2t=1-2sin2t which implies sin2t=1-cos2t2,sin2t+t=12-cos2t2+tsin2t+t=12-cos2t2+1s2sin2t+t=12s-12·ss2+4+1s2sin2t+t=ss2+4-s3+2s2+42s2s2+4sin2t+t=s3+4s-s3+2s2+82s2s2+4sin2t+t=2s2+4s+82s2s2+4sin2t+t=s2+2s+4s4+4s2

Step 2

b) f(t)=π2-8e-2t+et+12π2-8e-2t+et+12=π2-8e-2t+et+12π2-8e-2t+et+12=π2s-8e-2t+e2t+2et+1π2-8e-2t+et+12=π2s-8s+2+e2t+2et+1π2-8e-2t+et+12=π2s-8s+2+1s-2+2s-1+1s

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Numerical Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,