5. Find L {e" cos?t cos t
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
![**Problem 5**: Find \(\mathcal{L}\left\{ e^{7t} \cos^2 t \right\}\)
This problem requires finding the Laplace transform of the given function \( e^{7t} \cos^2 t \). The Laplace transform is an integral transform used to convert a function of a real variable \( t \) (often time) to a function of a complex variable \( s \) (complex frequency).
### Steps to Solve the Problem:
1. **Express the Trigonometric Function with Double Angle Formulas**:
Use the identity for the double angle of cosine:
\[
\cos^2 t = \frac{1 + \cos(2t)}{2}
\]
which simplifies the given function:
\[
e^{7t} \cos^2 t = e^{7t} \cdot \frac{1 + \cos(2t)}{2}
\]
2. **Rewrite the Function**:
Rewrite the function to a more manageable form:
\[
e^{7t} \cos^2 t = \frac{1}{2} e^{7t} + \frac{1}{2} e^{7t} \cos(2t)
\]
3. **Apply Linearity of the Laplace Transform**:
The Laplace transform \(\mathcal{L}\) is linear, so apply it to each term separately:
\[
\mathcal{L}\left\{ \frac{1}{2} e^{7t} + \frac{1}{2} e^{7t} \cos(2t) \right\} = \frac{1}{2} \mathcal{L}\left\{ e^{7t} \right\} + \frac{1}{2} \mathcal{L}\left\{ e^{7t} \cos(2t) \right\}
\]
4. **Find the Laplace Transforms**:
- For \(\mathcal{L}\{ e^{7t} \}\):
\[
\mathcal{L}\left\{ e^{7t} \right\} = \frac{1}{s - 7}, \quad \text{for } s > 7
\]
- For \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F24a60763-065d-4deb-b582-ca07220062f2%2Fcbfed147-c394-4765-8bcf-33ca6f7e18be%2Fc1nxw7_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem 5**: Find \(\mathcal{L}\left\{ e^{7t} \cos^2 t \right\}\)
This problem requires finding the Laplace transform of the given function \( e^{7t} \cos^2 t \). The Laplace transform is an integral transform used to convert a function of a real variable \( t \) (often time) to a function of a complex variable \( s \) (complex frequency).
### Steps to Solve the Problem:
1. **Express the Trigonometric Function with Double Angle Formulas**:
Use the identity for the double angle of cosine:
\[
\cos^2 t = \frac{1 + \cos(2t)}{2}
\]
which simplifies the given function:
\[
e^{7t} \cos^2 t = e^{7t} \cdot \frac{1 + \cos(2t)}{2}
\]
2. **Rewrite the Function**:
Rewrite the function to a more manageable form:
\[
e^{7t} \cos^2 t = \frac{1}{2} e^{7t} + \frac{1}{2} e^{7t} \cos(2t)
\]
3. **Apply Linearity of the Laplace Transform**:
The Laplace transform \(\mathcal{L}\) is linear, so apply it to each term separately:
\[
\mathcal{L}\left\{ \frac{1}{2} e^{7t} + \frac{1}{2} e^{7t} \cos(2t) \right\} = \frac{1}{2} \mathcal{L}\left\{ e^{7t} \right\} + \frac{1}{2} \mathcal{L}\left\{ e^{7t} \cos(2t) \right\}
\]
4. **Find the Laplace Transforms**:
- For \(\mathcal{L}\{ e^{7t} \}\):
\[
\mathcal{L}\left\{ e^{7t} \right\} = \frac{1}{s - 7}, \quad \text{for } s > 7
\]
- For \
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 8 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)