5. Find all x € Z satisfying the congruence equation x = 1mod 5. 6. Find all elements of the equivalence class of 12 under congruence modulo 5. 7. Let (a, b), (c,d) € R². Define a relation ~on R² by (a, b)~ (c,d) if 2a − b = 2c - d. (a) Show that ~ is an equivalence relation. (b) Find the equivalence class of (0, 1).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Mathematical Concepts and Problems

5. **Congruence Equation Problem**
   - **Task:** Find all \( x \in \mathbb{Z} \) satisfying the congruence equation \( x \equiv 1 \pmod{5} \).

6. **Equivalence Class under Modulo Operation**
   - **Task:** Find all elements of the equivalence class of 12 under congruence modulo 5.

7. **Equivalence Relation on \(\mathbb{R}^2\)**
   - **Definition:** Let \((a, b), (c, d) \in \mathbb{R}^2\). Define a relation \(\sim\) on \(\mathbb{R}^2\) by
     \[
     (a, b) \sim (c, d) \text{ if } 2a - b = 2c - d.
     \]
   - **Tasks:**
     - (a) Show that \(\sim\) is an equivalence relation.
     - (b) Find the equivalence class of \((0, 1)\).

8. **Equivalence Relation on \(\mathbb{R}\)**
   - **Definition:** Define a relation ‘\(\sim\)’ on \(\mathbb{R}\) by
     \[
     x \sim y \iff x - y \in \mathbb{Z}
     \]
   - **Tasks:**
     - (a) Show that \(\sim\) is an equivalence relation.
     - (b) Prove that the equivalence class \([0]_\sim\) of \(0 \in \mathbb{R}\) is the set \(\mathbb{Z}\).
Transcribed Image Text:### Mathematical Concepts and Problems 5. **Congruence Equation Problem** - **Task:** Find all \( x \in \mathbb{Z} \) satisfying the congruence equation \( x \equiv 1 \pmod{5} \). 6. **Equivalence Class under Modulo Operation** - **Task:** Find all elements of the equivalence class of 12 under congruence modulo 5. 7. **Equivalence Relation on \(\mathbb{R}^2\)** - **Definition:** Let \((a, b), (c, d) \in \mathbb{R}^2\). Define a relation \(\sim\) on \(\mathbb{R}^2\) by \[ (a, b) \sim (c, d) \text{ if } 2a - b = 2c - d. \] - **Tasks:** - (a) Show that \(\sim\) is an equivalence relation. - (b) Find the equivalence class of \((0, 1)\). 8. **Equivalence Relation on \(\mathbb{R}\)** - **Definition:** Define a relation ‘\(\sim\)’ on \(\mathbb{R}\) by \[ x \sim y \iff x - y \in \mathbb{Z} \] - **Tasks:** - (a) Show that \(\sim\) is an equivalence relation. - (b) Prove that the equivalence class \([0]_\sim\) of \(0 \in \mathbb{R}\) is the set \(\mathbb{Z}\).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,