5. Determine the values of a for which the system has no solutions, exactly one solution, or infinitely many solutions x + 2y + z = 2 2х — 2у + 3z %3 1 (x+2y – (a² – 3)z = a
5. Determine the values of a for which the system has no solutions, exactly one solution, or infinitely many solutions x + 2y + z = 2 2х — 2у + 3z %3 1 (x+2y – (a² – 3)z = a
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
please solve question (5)
![4. In each part solve the linear system by the elimination method
-2y + 3z = 1
3х + 6у — 3z %3D —9
бх + 6у + 3z %3D 5
а.
2x1 + x2
X2 + 3x3 – 2x4 = 0
2х1 + 3x2 + 2хз — Х4 — 0
-4x1 – 3x2 + 5x3 – 4x4 = 0
4xз + 3х4 — 0
|
b.
5. Determine the values of a for which the system has no
solutions, exactly one solution, or infinitely many solutions
x + 2y + z = 2
2х — 2у + 3z %3D1
х + 2у — (а? — 3)z %3Dа](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbe01e5dc-18a3-49b2-a6fe-5566068cec2a%2F7d9c9fea-fc81-42b7-a7c9-04c5eef0e605%2F4ty2oyq_processed.png&w=3840&q=75)
Transcribed Image Text:4. In each part solve the linear system by the elimination method
-2y + 3z = 1
3х + 6у — 3z %3D —9
бх + 6у + 3z %3D 5
а.
2x1 + x2
X2 + 3x3 – 2x4 = 0
2х1 + 3x2 + 2хз — Х4 — 0
-4x1 – 3x2 + 5x3 – 4x4 = 0
4xз + 3х4 — 0
|
b.
5. Determine the values of a for which the system has no
solutions, exactly one solution, or infinitely many solutions
x + 2y + z = 2
2х — 2у + 3z %3D1
х + 2у — (а? — 3)z %3Dа
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)