5. Consider the double integral rydA r=4+4 cos(0) = 25 Where R is the region of the XY plane, i1 -io given in the attached graph: By transforming the above integral by applying variable change in polar coordinates, one obtains: -4+4 cos(@) A) (n* cos(0) sin(0))drd0 + / 1. I ( cos(0) sin(0))drd0 , con 0, = arc cos () 4+4 cos(8) rdrde + rdrd0, con 01 = arc cos () ra+4 cos(0) C) I (* cos(0) sin(0))drd0 + TT(* cos(0) sin(0))drd0, con 0, = arc cos () r4+4 cos(8) D) I( cos(0) sin(@))drd0 + (12 cos(0) sin(0))drd®, con 61 (): = are coS

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please solve by hand

 

5. Consider the double integral
rydA
r=4+4 cos(0)
= 25
Where R is the region of the XY plane,
i1 -o
given in the attached graph:
By transforming the above integral by applying variable change in polar coordinates, one obtains:
-4+4 cos(@)
A)
(p cos(0) sin(0))drd0 + | (cos(0) sin(0))drd0, con 0, = arc cos ()
4+4 cos(8)
rdrde +
rdrdo, con 01 = arc cos ()
ra+4 cos(0)
C)
IP cos(0) sin (0)drdo +
TI(* cos(0) sin(0))drd0, con 0, = arc cos ()
r4+4 cos(8)
D)
T [* cos(0) sin(0))drd0 +
(r2 cos(0) sin(0))drd®, con 61
():
= are coS
Transcribed Image Text:5. Consider the double integral rydA r=4+4 cos(0) = 25 Where R is the region of the XY plane, i1 -o given in the attached graph: By transforming the above integral by applying variable change in polar coordinates, one obtains: -4+4 cos(@) A) (p cos(0) sin(0))drd0 + | (cos(0) sin(0))drd0, con 0, = arc cos () 4+4 cos(8) rdrde + rdrdo, con 01 = arc cos () ra+4 cos(0) C) IP cos(0) sin (0)drdo + TI(* cos(0) sin(0))drd0, con 0, = arc cos () r4+4 cos(8) D) T [* cos(0) sin(0))drd0 + (r2 cos(0) sin(0))drd®, con 61 (): = are coS
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,