= 5. Consider the 4 x 5 matrix A = [u₁|u2|u3|us| us], where the columns are U₂ = Uz = A U4 = 8 -1 1 U5 = 1 a) Find a set of vectors in {u₁, U2, U3, us, us) which is a basis of the column space of A. b) Find the rank of A. D o

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
5. Consider the 4 × 5 matrix \( A = [ u_1 \, | \, u_2 \, | \, u_3 \, | \, u_4 \, | \, u_5 ] \), where the columns are

\[
u_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 5 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \quad u_3 = \begin{bmatrix} -2 \\ -2 \\ 1 \\ 3 \end{bmatrix}, \quad u_4 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \quad u_5 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 5 \end{bmatrix}
\]

a) Find a set of vectors in \(\{u_1, u_2, u_3, u_4, u_5\}\) which is a basis of the column space of \( A \).

b) Find the rank of \( A \).
Transcribed Image Text:5. Consider the 4 × 5 matrix \( A = [ u_1 \, | \, u_2 \, | \, u_3 \, | \, u_4 \, | \, u_5 ] \), where the columns are \[ u_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 5 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \quad u_3 = \begin{bmatrix} -2 \\ -2 \\ 1 \\ 3 \end{bmatrix}, \quad u_4 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \quad u_5 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 5 \end{bmatrix} \] a) Find a set of vectors in \(\{u_1, u_2, u_3, u_4, u_5\}\) which is a basis of the column space of \( A \). b) Find the rank of \( A \).
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,