5. Complete the square and write into graphing form: a. y= x² – 2x +2 b. y = 2x – 4x - -

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

Please Write Neatly So I Can Understand 

### Completing the Square and Writing in Graphing Form

**5. Complete the square and write into graphing form:**

#### a. \( y = x^2 - 2x + 2 \)

**Vertex:**

**Stretch:**

**Opens:**

#### b. \( y = 2x^2 - 4x \)

**Vertex:**

**Stretch:**

**Opens:**

### Instructions:
1. To convert each quadratic equation into graphing (vertex) form, complete the square.
2. Identify and write the vertex coordinates.
3. Identify how the parabola stretches.
4. Determine the direction in which the parabola opens.

### Example:
For \( y = x^2 - 2x + 2 \):

1. **Complete the square:**
   \[ y = (x^2 - 2x + 1) + 2 - 1 \]
   \[ y = (x-1)^2 + 1 \]

2. **Graphing form:**
   \[ y = (x-1)^2 + 1 \]

3. **Identify the vertex:**
   \[ Vertex: (1, 1) \]

4. **Determine the parabola's stretch and direction:**
   - **Stretch:** Standard parabola stretch (no coefficient change).
   - **Opens:** Upward (positive coefficient of \(x^2\)).

For \( y = 2x^2 - 4x \):

1. **Complete the square:**
   \[ y = 2(x^2 - 2x) \]
   Add and subtract 1 inside the parenthesis:
   \[ y = 2(x^2 - 2x + 1 - 1) \]
   \[ y = 2((x-1)^2 - 1) \]
   \[ y = 2(x-1)^2 - 2 \]

2. **Graphing form:**
   \[ y = 2(x-1)^2 - 2 \]

3. **Identify the vertex:**
   \[ Vertex: (1, -2) \]

4. **Determine the parabola's stretch and direction:**
   - **Stretch:** Vertically stretched by a factor of 2.
   - **Opens:** Upward (positive coefficient of \(2x^2\)).
Transcribed Image Text:### Completing the Square and Writing in Graphing Form **5. Complete the square and write into graphing form:** #### a. \( y = x^2 - 2x + 2 \) **Vertex:** **Stretch:** **Opens:** #### b. \( y = 2x^2 - 4x \) **Vertex:** **Stretch:** **Opens:** ### Instructions: 1. To convert each quadratic equation into graphing (vertex) form, complete the square. 2. Identify and write the vertex coordinates. 3. Identify how the parabola stretches. 4. Determine the direction in which the parabola opens. ### Example: For \( y = x^2 - 2x + 2 \): 1. **Complete the square:** \[ y = (x^2 - 2x + 1) + 2 - 1 \] \[ y = (x-1)^2 + 1 \] 2. **Graphing form:** \[ y = (x-1)^2 + 1 \] 3. **Identify the vertex:** \[ Vertex: (1, 1) \] 4. **Determine the parabola's stretch and direction:** - **Stretch:** Standard parabola stretch (no coefficient change). - **Opens:** Upward (positive coefficient of \(x^2\)). For \( y = 2x^2 - 4x \): 1. **Complete the square:** \[ y = 2(x^2 - 2x) \] Add and subtract 1 inside the parenthesis: \[ y = 2(x^2 - 2x + 1 - 1) \] \[ y = 2((x-1)^2 - 1) \] \[ y = 2(x-1)^2 - 2 \] 2. **Graphing form:** \[ y = 2(x-1)^2 - 2 \] 3. **Identify the vertex:** \[ Vertex: (1, -2) \] 4. **Determine the parabola's stretch and direction:** - **Stretch:** Vertically stretched by a factor of 2. - **Opens:** Upward (positive coefficient of \(2x^2\)).
Expert Solution
steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Knowledge Booster
Fractions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education