5. (Ci | Show that L{e"t"} = n! in two ways: (s- a)n+1 (a) Use the translation property for F(s). (b) Use formula (6) for the derivatives of the Laplace transform.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Plz solve this now in 30 min nd take a thumb up
Brief Table of Laplace Transform
f(t)
F(s) := L{f}(s)
1
s >0
s > a
eat
t", n = 0,1,...
S-a'
n!
s> 0
s > 0
sin bt
5² +b² ?
Cos bt
s> 0
eat tn.
n = 0,1, ...
n!
-a)n+I
s-a
eat sin bt
s> a
(s-a)²+b² >
(s-a)²+b² >
eat cos bt
s-a
s> a
Transcribed Image Text:Brief Table of Laplace Transform f(t) F(s) := L{f}(s) 1 s >0 s > a eat t", n = 0,1,... S-a' n! s> 0 s > 0 sin bt 5² +b² ? Cos bt s> 0 eat tn. n = 0,1, ... n! -a)n+I s-a eat sin bt s> a (s-a)²+b² > (s-a)²+b² > eat cos bt s-a s> a
5. Gi
n!
| Show that L{e"t"} = -
in two ways:
(s - a)»+1
(a) Use the translation property for F(s).
(b) Use formula (6) for the derivatives of the Laplace transform.
Transcribed Image Text:5. Gi n! | Show that L{e"t"} = - in two ways: (s - a)»+1 (a) Use the translation property for F(s). (b) Use formula (6) for the derivatives of the Laplace transform.
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,