5. An 80 kg gymnast dismounts from a high bar. He starts the dismount at full extension, then tucks to complete a number of revolutions before landing. His moment of inertia when fully extended can be approximated as a rod of length 1.8 m and when in the tuck a rod of half that length. If his rotation rate at full extension is 1.0 rev/s and he enters the tuck when his center of mass is at 3.0 m height moving horizontally to the floor, how many revolutions can he execute if he comes out of the tuck at 1.8 m height?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
5. An 80 kg gymnast dismounts from a high bar. He starts the dismount at full extension, then
tucks to complete a number of revolutions before landing. His moment of inertia when fully
extended can be approximated as a rod of length 1.8 m and when in the tuck a rod of half that
length. If his rotation rate at full extension is 1.0 rev/s and he enters the tuck when his center of
mass is at 3.0 m height moving horizontally to the floor, how many revolutions can he execute if
he comes out of the tuck at 1.8 m height?
High bar
1.8 m
3 m
ANS.
Moment of inertia at full extension, I = 21.6 kg-m^2
Moment of inertia at the tuck I' = 5.4 kg-m^2
Angular velocity at the tuck = 4 rev/sec
Time interval in the tuck = 0.5 sec
i.e. In 0.5 s, he will be able to execute two revolutions at 4.0 rev/s.
Transcribed Image Text:5. An 80 kg gymnast dismounts from a high bar. He starts the dismount at full extension, then tucks to complete a number of revolutions before landing. His moment of inertia when fully extended can be approximated as a rod of length 1.8 m and when in the tuck a rod of half that length. If his rotation rate at full extension is 1.0 rev/s and he enters the tuck when his center of mass is at 3.0 m height moving horizontally to the floor, how many revolutions can he execute if he comes out of the tuck at 1.8 m height? High bar 1.8 m 3 m ANS. Moment of inertia at full extension, I = 21.6 kg-m^2 Moment of inertia at the tuck I' = 5.4 kg-m^2 Angular velocity at the tuck = 4 rev/sec Time interval in the tuck = 0.5 sec i.e. In 0.5 s, he will be able to execute two revolutions at 4.0 rev/s.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Knowledge Booster
Axial Load
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY