5. a) Let X be Bin(6,0.7). Find P(X ≤ 5). Use the table. Bin(6,0.5) P(x <= 5) = Σ = 0.882 5 6 $($.•.· 0 0.7 (1–0.7)¹² b) Let X be Bin (7,0.5). Find P(2 < X<5). Use either the formula or the table. P(2 < X < 5) = F(4) — F(2) = 0.773 – 0.227 = 0.546 c) Let X be Poisson(5). Find P(3 < X < 6). Use the formulas. Round off your answer to 3 decimal pla P(3 < X < 6) = P(4) + P(5) = 0.351

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
5. a) Let X be Bin(6,0.7). Find P(X ≤ 5). Use the table.
Bin(6,0.5)
5
P(x <= 5) = $60.7¹ (1-0.7)¹²-
= 0.882
0
b) Let X be Bin(7,0.5). Find P(2 < X<5). Use either the formula or the table.
P(2 < X < 5) = F(4) — F(2) = 0.773 – 0.227 = 0.546
c) Let X be Poisson(5). Find P(3< X < 6). Use the formulas. Round off your answer to 3 decimal places
P(3 < X < 6) = P(4) + P(5) = 0.351
Transcribed Image Text:5. a) Let X be Bin(6,0.7). Find P(X ≤ 5). Use the table. Bin(6,0.5) 5 P(x <= 5) = $60.7¹ (1-0.7)¹²- = 0.882 0 b) Let X be Bin(7,0.5). Find P(2 < X<5). Use either the formula or the table. P(2 < X < 5) = F(4) — F(2) = 0.773 – 0.227 = 0.546 c) Let X be Poisson(5). Find P(3< X < 6). Use the formulas. Round off your answer to 3 decimal places P(3 < X < 6) = P(4) + P(5) = 0.351
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 9 images

Blurred answer