5. A boot strap cooling system of 10 tons is used in an aeroplane. The temperature and pressure conditions of atmosphere are 20°C and 0.9 atm. The pressure of air is increased from 0.9 atm to 1.l atm due to ramming. The pressures of air leaving the main and auxiliary compressor are 3 atm and 4 atm respectively. Isentropic efficiency of compressors and turbine are 0.85 and 0.8 respectively. 50% of the total heat of air leaving the main compressor is removed in the first heat exchanger and 30% of their total heat of air leaving the auxiliary compressor is removed in the second heat exchanger using removed air. Find: a) Power required to take cabin load b) COP of the system The cabin pressure is 1.02 atm and temperature of air leaving the cabin should be greater than 25°C. Assume ramming action to be isentropic.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

Air refrigeration system 

5. A boot strap cooling system of 10 tons is used in an aeroplane. The temperature and pressure conditions of
atmosphere are 20°C and 0.9 atm. The pressure of air is increased from 0.9 atm to 1.l atm due to ramming.
The pressures of air leaving the main and auxiliary compressor are 3 atm and 4 atm respectively. Isentropic
efficiency of compressors and turbine are 0.85 and 0.8 respectively. 50% of the total heat of air leaving the
main compressor is removed in the first heat exchanger and 30% of their total heat of air leaving the
auxiliary compressor is removed in the second heat exchanger using removed air. Find:
a) Power required to take cabin load
b) COP of the system
The cabin pressure is 1.02 atm and temperature of air leaving the cabin should be greater than 25°C. Assume
ramming action to be isentropic.
Transcribed Image Text:5. A boot strap cooling system of 10 tons is used in an aeroplane. The temperature and pressure conditions of atmosphere are 20°C and 0.9 atm. The pressure of air is increased from 0.9 atm to 1.l atm due to ramming. The pressures of air leaving the main and auxiliary compressor are 3 atm and 4 atm respectively. Isentropic efficiency of compressors and turbine are 0.85 and 0.8 respectively. 50% of the total heat of air leaving the main compressor is removed in the first heat exchanger and 30% of their total heat of air leaving the auxiliary compressor is removed in the second heat exchanger using removed air. Find: a) Power required to take cabin load b) COP of the system The cabin pressure is 1.02 atm and temperature of air leaving the cabin should be greater than 25°C. Assume ramming action to be isentropic.
Expert Solution
steps

Step by step

Solved in 5 steps with 15 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY