5 – x 3. If f(x) = , then f'(x) = x' + 2 – 4x³ + 15x² – 2 (A) (² + 2)° – 2r° + 15x² + 2 (B) 2.x³ – 15x² – 2 (C) (* + 2° 4x – 15x2 + 2 (D) (? +2) 2 Page

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem 3: Differentiation of a Rational Function**

Given the function \( f(x) = \frac{5 - x}{x^3 + 2} \), find the derivative \( f'(x) \).

**Options:**
- (A) \( \frac{-4x^3 + 15x^2 - 2}{(x^3 + 2)^2} \)
- (B) \( \frac{-2x^3 + 15x^2 + 2}{(x^3 + 2)^2} \)
- (C) \( \frac{2x^3 - 15x^2 - 2}{(x^3 + 2)^2} \)
- (D) \( \frac{4x^3 - 15x^2 + 2}{(x^3 + 2)^2} \)

**Solution Approach:**
To solve this, apply the quotient rule:
\[ f'(x) = \frac{(g(x) \cdot h'(x) - h(x) \cdot g'(x))}{(h(x))^2} \]

For \( f(x) = \frac{g(x)}{h(x)} \), where:
- \( g(x) = 5 - x \)
- \( h(x) = x^3 + 2 \)

Find \( g'(x) \) and \( h'(x) \):
- \( g'(x) = -1 \)
- \( h'(x) = 3x^2 \)

Substitute these into the quotient rule to find \( f'(x) \).

**Explanation of Graphs/Diagrams:**
In a real educational setting, visual aids such as graphs can provide further insight into the behavior of the function and its derivative over certain intervals of \( x \).

**Further Exploration:**
Review and practice the quotient rule for differentiating rational functions and explore additional problems to strengthen understanding of derivatives.
Transcribed Image Text:**Problem 3: Differentiation of a Rational Function** Given the function \( f(x) = \frac{5 - x}{x^3 + 2} \), find the derivative \( f'(x) \). **Options:** - (A) \( \frac{-4x^3 + 15x^2 - 2}{(x^3 + 2)^2} \) - (B) \( \frac{-2x^3 + 15x^2 + 2}{(x^3 + 2)^2} \) - (C) \( \frac{2x^3 - 15x^2 - 2}{(x^3 + 2)^2} \) - (D) \( \frac{4x^3 - 15x^2 + 2}{(x^3 + 2)^2} \) **Solution Approach:** To solve this, apply the quotient rule: \[ f'(x) = \frac{(g(x) \cdot h'(x) - h(x) \cdot g'(x))}{(h(x))^2} \] For \( f(x) = \frac{g(x)}{h(x)} \), where: - \( g(x) = 5 - x \) - \( h(x) = x^3 + 2 \) Find \( g'(x) \) and \( h'(x) \): - \( g'(x) = -1 \) - \( h'(x) = 3x^2 \) Substitute these into the quotient rule to find \( f'(x) \). **Explanation of Graphs/Diagrams:** In a real educational setting, visual aids such as graphs can provide further insight into the behavior of the function and its derivative over certain intervals of \( x \). **Further Exploration:** Review and practice the quotient rule for differentiating rational functions and explore additional problems to strengthen understanding of derivatives.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning