(5) A rectangular loop is released from rest and falls into a region where there is a uniform magnetic field, B. The region of the magnetic field starts at the dashed line and continues downward for a large distance. The field is out of the page. The loop has mass m, resistance R, and sides of length a. When it was released, the bottom of the loop was a distance h above the dashed line. The figure shows the loop as it B enters the field. a b Use: m = 0.010 kg, R = 0.10 Q2, a = 0.10 m, b = 0.03 m, h = 0.05 m, B = 3.0 T. a) Describe qualitatively the motion of the loop starting from the time it is dropped a height h above the field and continuing until it is well below the dashed line. Two important times in your description will be when the loop first enters the field (as shown in the figure) and when it first becomes fully immersed in the field. b) What is the current in the loop when it first enters the field? Is the current going around the loop clockwise or counterclockwise? c) What is the magnetic force on the loop at this time? How does it compare to the loop's weight? d) It turns out that, for reasonable choices of the loop and field parameters, the loop will reach terminal velocity shortly after the lower edge first enters the field because the magnetic force on the loop becomes sufficient to match the gravitational force downwards. (An object that reaches "terminal velocity" falls at constant velocity.) Suppose the loop reaches terminal velocity, v = vt, before the top of the loop falls below the dashed line. What is v₁?

University Physics Volume 2
18th Edition
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Chapter14: Inductance
Section: Chapter Questions
Problem 86CP: A rectangular copper ring, of mass 100 g and resistance 0.2 1, is in a region of uniform magnetic...
Question
100%
(5)
A rectangular loop is released from rest and falls into
a region where there is a uniform magnetic field, B.
The region of the magnetic field starts at the dashed
line and continues downward for a large distance. The
field is out of the page. The loop has mass m,
resistance R, and sides of length a. When it was
released, the bottom of the loop was a distance h
above the dashed line. The figure shows the loop as it B
enters the field.
a
b
Use: m = 0.010 kg, R = 0.10 Q2, a = 0.10 m, b = 0.03 m, h = 0.05 m, B = 3.0 T.
a) Describe qualitatively the motion of the loop starting from the time it is
dropped a height h above the field and continuing until it is well below the
dashed line. Two important times in your description will be when the loop
first enters the field (as shown in the figure) and when it first becomes fully
immersed in the field.
b) What is the current in the loop when it first enters the field? Is the current
going around the loop clockwise or counterclockwise?
c) What is the magnetic force on the loop at this time? How does it compare to
the loop's weight?
d) It turns out that, for reasonable choices of the loop and field parameters, the
loop will reach terminal velocity shortly after the lower edge first enters the
field because the magnetic force on the loop becomes sufficient to match the
gravitational force downwards. (An object that reaches "terminal velocity"
falls at constant velocity.) Suppose the loop reaches terminal velocity, v = vt,
before the top of the loop falls below the dashed line. What is v₁?
Transcribed Image Text:(5) A rectangular loop is released from rest and falls into a region where there is a uniform magnetic field, B. The region of the magnetic field starts at the dashed line and continues downward for a large distance. The field is out of the page. The loop has mass m, resistance R, and sides of length a. When it was released, the bottom of the loop was a distance h above the dashed line. The figure shows the loop as it B enters the field. a b Use: m = 0.010 kg, R = 0.10 Q2, a = 0.10 m, b = 0.03 m, h = 0.05 m, B = 3.0 T. a) Describe qualitatively the motion of the loop starting from the time it is dropped a height h above the field and continuing until it is well below the dashed line. Two important times in your description will be when the loop first enters the field (as shown in the figure) and when it first becomes fully immersed in the field. b) What is the current in the loop when it first enters the field? Is the current going around the loop clockwise or counterclockwise? c) What is the magnetic force on the loop at this time? How does it compare to the loop's weight? d) It turns out that, for reasonable choices of the loop and field parameters, the loop will reach terminal velocity shortly after the lower edge first enters the field because the magnetic force on the loop becomes sufficient to match the gravitational force downwards. (An object that reaches "terminal velocity" falls at constant velocity.) Suppose the loop reaches terminal velocity, v = vt, before the top of the loop falls below the dashed line. What is v₁?
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning