-¹ {5 (a) 2-1 [ 3)²} (b) L-1 s(s+3)² { (3² + 4)²} (Hint: you may want to use the trig identity sin(a) cos(b) = sin(a+b)+sin(a−b))

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Inverse Laplace Transform as Convolution Integrals**

**Objective:**
Evaluate the given inverse Laplace transforms as convolution integrals, and then evaluate the integrals without directly referencing the table of Laplace transforms.

---

**Exercises:**

(a) Evaluate the inverse Laplace transform:

\[
\mathcal{L}^{-1} \left\{ \frac{1}{s(s + 3)^2} \right\}
\]

(b) Evaluate the inverse Laplace transform:

\[
\mathcal{L}^{-1} \left\{ \frac{s}{(s^2 + 4)^2} \right\}
\]

**Hint:** For part (b), you may want to use the trigonometric identity:

\[
\sin(a) \cos(b) = \frac{1}{2} \sin(a+b) + \frac{1}{2} \sin(a-b)
\]
Transcribed Image Text:**Inverse Laplace Transform as Convolution Integrals** **Objective:** Evaluate the given inverse Laplace transforms as convolution integrals, and then evaluate the integrals without directly referencing the table of Laplace transforms. --- **Exercises:** (a) Evaluate the inverse Laplace transform: \[ \mathcal{L}^{-1} \left\{ \frac{1}{s(s + 3)^2} \right\} \] (b) Evaluate the inverse Laplace transform: \[ \mathcal{L}^{-1} \left\{ \frac{s}{(s^2 + 4)^2} \right\} \] **Hint:** For part (b), you may want to use the trigonometric identity: \[ \sin(a) \cos(b) = \frac{1}{2} \sin(a+b) + \frac{1}{2} \sin(a-b) \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,